Hundley Frances V, Gonzalez-Lozano Miguel A, Gottschalk Lena M, Cook Aslan N K, Zhang Jiuchun, Paulo Joao A, Harper J Wade
Department of Cell Biology, Harvard Medical School, Boston, MA 02115.
Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD 20815.
Proc Natl Acad Sci U S A. 2024 Dec 24;121(52):e2419079121. doi: 10.1073/pnas.2419079121. Epub 2024 Dec 5.
Plasma membrane protein degradation and recycling are regulated by the endolysosomal system, wherein endocytic vesicles bud from the plasma membrane into the cytoplasm and mature into endosomes and then degradative lysosomes. As such, the endolysosomal system plays a critical role in determining the abundance of proteins on the cell surface and influencing cellular identity and function. Highly polarized cells, like neurons, rely on the endolysosomal system for axonal and dendritic specialization and synaptic compartmentalization. The importance of this system to neuronal function is reflected by the prevalence of risk variants in components of the system in several neurodegenerative diseases, ranging from Parkinson's to Alzheimer's disease. Nevertheless, our understanding of endocytic cargo and core endolysosomal machinery in neurons is limited, in part due to technical limitations. Here, we develop a toolkit for capturing EEA1-positive endosomes (termed Endo-IP) and TMEM192-positive lysosomes (termed Lyso-IP) in stem cell-derived induced neurons (iNeurons). We demonstrate its utility by revealing the endolysosomal protein landscapes for stem cells and cortical-like iNeurons, and profiling endosomes in response to potassium-mediated neuronal depolarization. Through global profiling of endocytic cargo, we identify hundreds of transmembrane proteins, including neurogenesis and synaptic proteins, as well as endocytic cargo with predicted SNX17 or SNX27 recognition motifs. By contrast, parallel lysosome profiling reveals a simpler protein repertoire, reflecting in part temporally controlled recycling or degradation for many endocytic targets. This system will facilitate mechanistic interrogation of endolysosomal components found as risk factors in neurodegenerative disease.
质膜蛋白的降解和循环由内溶酶体系统调控,在内溶酶体系统中,内吞小泡从质膜芽生进入细胞质,成熟为内体,然后成为降解性溶酶体。因此,内溶酶体系统在决定细胞表面蛋白丰度以及影响细胞特性和功能方面发挥着关键作用。高度极化的细胞,如神经元,依赖内溶酶体系统进行轴突和树突特化以及突触区室化。该系统对神经元功能的重要性体现在其在多种神经退行性疾病(从帕金森病到阿尔茨海默病)系统组成部分中风险变异的普遍性上。然而,我们对神经元内吞货物和核心内溶酶体机制的了解有限,部分原因是技术限制。在这里,我们开发了一种工具包,用于在干细胞衍生的诱导神经元(iNeurons)中捕获EEA1阳性内体(称为Endo-IP)和TMEM192阳性溶酶体(称为Lyso-IP)。我们通过揭示干细胞和皮质样iNeurons的内溶酶体蛋白图谱,以及分析响应钾介导的神经元去极化的内体,证明了其效用。通过对内吞货物的全局分析,我们鉴定了数百种跨膜蛋白,包括神经发生和突触蛋白,以及具有预测的SNX17或SNX27识别基序的内吞货物。相比之下,平行的溶酶体分析揭示了一个更简单的蛋白质库,部分反映了许多内吞靶点在时间上受控的循环利用或降解。该系统将有助于对在神经退行性疾病中作为风险因素发现的内溶酶体成分进行机制研究。