Suppr超能文献

血清动力学:使用血清学数据进行流行病学推断方法的入门介绍与综合综述

Serodynamics: A primer and synthetic review of methods for epidemiological inference using serological data.

作者信息

Hay James A, Routledge Isobel, Takahashi Saki

机构信息

Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.

Department of Medicine, University of California San Francisco, San Francisco, CA, USA.

出版信息

Epidemics. 2024 Dec;49:100806. doi: 10.1016/j.epidem.2024.100806. Epub 2024 Nov 30.

Abstract

We present a review and primer of methods to understand epidemiological dynamics and identify past exposures from serological data, referred to as serodynamics. We discuss processing and interpreting serological data prior to fitting serodynamical models, and review approaches for estimating epidemiological trends and past exposures, ranging from serocatalytic models applied to binary serostatus data, to more complex models incorporating quantitative antibody measurements and immunological understanding. Although these methods are seemingly disparate, we demonstrate how they are derived within a common mathematical framework. Finally, we discuss key areas for methodological development to improve scientific discovery and public health insights in seroepidemiology.

摘要

我们对用于理解流行病学动态并从血清学数据(即血清动力学)中识别过去暴露情况的方法进行综述并给出入门介绍。我们讨论在拟合血清动力学模型之前处理和解释血清学数据的方法,并综述估计流行病学趋势和过去暴露情况的方法,范围从应用于二元血清状态数据的血清催化模型到纳入定量抗体测量和免疫学理解的更复杂模型。尽管这些方法看似不同,但我们展示了它们是如何在一个共同的数学框架内推导出来的。最后,我们讨论方法学发展的关键领域,以改善血清流行病学中的科学发现和公共卫生见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adac/11649536/5452e0eb2af3/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验