Suppr超能文献

关于联合使用数学和统计模型来估计疟疾传播参数的综合综述。

An integrative review of the combined use of mathematical and statistical models for estimating malaria transmission parameters.

作者信息

Grosso Alessandro, Hens Niel, Abrams Steven

机构信息

Global Health Institute, Department of Family Medicine and Population Health, University of Antwerp, Antwerp, Belgium.

Data Science Institute, Interuniversity Institute for Biostatistics and statistical Bioinformatics, Hasselt University, Hasselt, Belgium.

出版信息

Malar J. 2025 May 30;24(1):173. doi: 10.1186/s12936-025-05415-5.

Abstract

BACKGROUND

Characterizing malaria burden and its evolution is complicated by the high levels of spatio-temporal heterogeneity and by the complexity of the transmission process.

MAIN BODY

This manuscript presents an integrative review of the combined use of mathematical and statistical models to estimate malaria transmission parameters. Therefore, this work aims to provide a solid methodological foundation for the estimation of transmission intensity and other relevant quantities. A perspective covering both mathematical and statistical models to appraise commonly used metrics is adopted and subsequently their inclusion as parameters in compartmental models as well as their estimation from available data is discussed. The current review argues in favour of a more widespread consideration of the Force of Infection (FOI) as a malaria transmission metric. Using the FOI dispenses the analyst from explicitly describing vector dynamics in compartmental modelling, simplifying the system of differential equations describing transmission dynamics. In turn, its estimation can be flexibly performed by solely relying on host data, such as parasitaemia or serology, avoiding the need for entomological data.

CONCLUSION

The present work argues that the interaction between mathematical and statistical models, although previously exemplified by others, is underappreciated when modelling malaria transmission. Orienting the exposition around the FOI provides an illustration of the potential borne by the existing methodology. A connection between the two modelling frameworks warrants better scrutiny, as it leads to the possibility of exploiting the full range of modern statistical methods.

摘要

背景

疟疾负担及其演变的特征描述因时空异质性程度高以及传播过程的复杂性而变得复杂。

主体内容

本手稿对数学模型和统计模型联合使用以估计疟疾传播参数进行了综合综述。因此,这项工作旨在为传播强度及其他相关量的估计提供坚实的方法基础。采用了涵盖数学模型和统计模型以评估常用指标的视角,随后讨论了将这些指标作为参数纳入 compartmental 模型以及从现有数据进行估计的情况。当前综述主张更广泛地将感染力(FOI)视为疟疾传播指标。使用 FOI 可使分析人员在 compartmental 建模中无需明确描述媒介动态,简化了描述传播动态的微分方程组。相应地,仅依靠宿主数据(如寄生虫血症或血清学数据)就可以灵活地进行其估计,而无需昆虫学数据。

结论

本研究认为,尽管之前已有其他人举例说明,但在对疟疾传播进行建模时,数学模型和统计模型之间的相互作用仍未得到充分重视。围绕 FOI 展开阐述说明了现有方法的潜力。两个建模框架之间的联系值得更好地审视,因为这有可能利用所有现代统计方法。

相似文献

2
Mathematical models of malaria--a review.疟疾的数学模型——综述。
Malar J. 2011 Jul 21;10:202. doi: 10.1186/1475-2875-10-202.
9
Mathematical models of Plasmodium vivax transmission: A scoping review.《疟原虫 vivax 传播的数学模型:范围综述》。
PLoS Comput Biol. 2024 Mar 14;20(3):e1011931. doi: 10.1371/journal.pcbi.1011931. eCollection 2024 Mar.

本文引用的文献

2
Population heterogeneity in Plasmodium vivax relapse risk.人群中间日疟原虫复发风险的异质性。
PLoS Negl Trop Dis. 2022 Dec 19;16(12):e0010990. doi: 10.1371/journal.pntd.0010990. eCollection 2022 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验