Suppr超能文献

serosim:一个用于模拟疫苗接种、流行病学和抗体动力学过程中产生的血清学数据的 R 包。

serosim: An R package for simulating serological data arising from vaccination, epidemiological and antibody kinetics processes.

机构信息

Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America.

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America.

出版信息

PLoS Comput Biol. 2023 Aug 14;19(8):e1011384. doi: 10.1371/journal.pcbi.1011384. eCollection 2023 Aug.

Abstract

serosim is an open-source R package designed to aid inference from serological studies, by simulating data arising from user-specified vaccine and antibody kinetics processes using a random effects model. Serological data are used to assess population immunity by directly measuring individuals' antibody titers. They uncover locations and/or populations which are susceptible and provide evidence of past infection or vaccination to help inform public health measures and surveillance. Both serological data and new analytical techniques used to interpret them are increasingly widespread. This creates a need for tools to simulate serological studies and the processes underlying observed titer values, as this will enable researchers to identify best practices for serological study design, and provide a standardized framework to evaluate the performance of different inference methods. serosim allows users to specify and adjust model inputs representing underlying processes responsible for generating the observed titer values like time-varying patterns of infection and vaccination, population demography, immunity and antibody kinetics, and serological sampling design in order to best represent the population and disease system(s) of interest. This package will be useful for planning sampling design of future serological studies, understanding determinants of observed serological data, and validating the accuracy and power of new statistical methods.

摘要

serosim 是一个开源的 R 包,旨在通过使用随机效应模型模拟用户指定的疫苗和抗体动力学过程产生的数据,帮助从血清学研究中进行推断。血清学数据用于通过直接测量个体的抗体滴度来评估人群免疫力。它们揭示了易受感染的地点和/或人群,并提供了过去感染或接种疫苗的证据,以帮助为公共卫生措施和监测提供信息。用于解释这些数据的血清学数据和新的分析技术越来越普及。这就需要有工具来模拟血清学研究以及观察到的效价值背后的过程,因为这将使研究人员能够确定血清学研究设计的最佳实践,并提供一个标准化的框架来评估不同推断方法的性能。serosim 允许用户指定和调整表示生成观察到的效价值的潜在过程的模型输入,例如感染和接种疫苗的时变模式、人口统计学、免疫力和抗体动力学以及血清学抽样设计,以最好地代表感兴趣的人群和疾病系统。该软件包将有助于规划未来血清学研究的抽样设计,了解观察到的血清学数据的决定因素,并验证新统计方法的准确性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32ac/10449138/d322171af8dd/pcbi.1011384.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验