Suppr超能文献

使用血液参数,通过统计和机器学习方法预测新冠病毒肺炎患者的住院时间概率

Prediction of hospitalization time probability for COVID-19 patients with statistical and machine learning methods using blood parameters.

作者信息

Motarjem Kiomars, Behzadifard Mahin, Ramazi Shahin, Tabatabaei Seyed A H

机构信息

Department of Statistics, Faculty of Mathematical Sciences, Tarbiat Modares University.

Department of Medical Laboratory Sciences, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful.

出版信息

Ann Med Surg (Lond). 2024 Sep 4;86(12):7125-7134. doi: 10.1097/MS9.0000000000002477. eCollection 2024 Dec.

Abstract

OBJECTIVES

Coronavirus disease 2019 (COVID-19) may induce life-threatening complications and lead to death in the patients.

METHOD

The aim of this study was to describe a predictive model for the disease outcome (length of hospitalization and mortality) by using blood parameters results at the admission time of 201 patients with positive RT-PCR test for the infection. Variables including; age, sex, comorbidity risk factors, the length of hospitalization, and 25 blood parameters results at the time of admission were considered.

RESULTS

After analyzing the data, it was observed that several factors, such as hypocalcemia, hyponatremia, red blood cell microcytosis, monocytopenia, thrombocytosis, comorbidity risk factors (diabetes, dialysis, cardiovascular diseases, and hypertension), and age over 50 years had a significant impact on the length of hospitalization and mortality of the patients (<0.05).

CONCLUSION

Based on the data analysis, the authors found that the proportional hazard assumption was not established. Therefore, the authors opted to use the accelerated failure time model for our analysis. Among the various models considered, the log-normal model provided the best fit. Considering the analysis of laboratory results at the time of admission, the authors propose that thrombocytosis, red blood cell microcytosis, monocytopenia, hypocalcemia, hyponatremia, comorbidity factors, and age over 50 years can serve as predictive markers for estimating hospitalization length and mortality. These findings suggest that these factors may play a significant role in predicting patient outcomes.

摘要

目的

2019冠状病毒病(COVID-19)可能引发危及生命的并发症并导致患者死亡。

方法

本研究的目的是通过使用201例逆转录聚合酶链反应(RT-PCR)检测感染呈阳性患者入院时的血液参数结果,描述该疾病预后(住院时长和死亡率)的预测模型。考虑的变量包括年龄、性别、合并症风险因素、住院时长以及入院时的25项血液参数结果。

结果

分析数据后发现,低钙血症、低钠血症、红细胞小红细胞症、单核细胞减少症、血小板增多症、合并症风险因素(糖尿病、透析、心血管疾病和高血压)以及50岁以上年龄等几个因素对患者的住院时长和死亡率有显著影响(<0.05)。

结论

基于数据分析,作者发现比例风险假设未成立。因此,作者选择使用加速失效时间模型进行分析。在所考虑的各种模型中,对数正态模型拟合效果最佳。考虑到入院时的实验室结果分析,作者提出血小板增多症、红细胞小红细胞症、单核细胞减少症、低钙血症、低钠血症、合并症因素以及50岁以上年龄可作为估计住院时长和死亡率的预测指标。这些发现表明这些因素可能在预测患者预后方面发挥重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9530/11623833/58fa4ead7ab8/ms9-86-7125-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验