Suppr超能文献

TREMSUCS-TCGA——一种用于识别治疗成功生物标志物的综合工作流程。

TREMSUCS-TCGA - an integrated workflow for the identification of biomarkers for treatment success.

作者信息

Balogh Gabor, Jorge Natasha, Dupain Célia, Kamal Maud, Servant Nicolas, Le Tourneau Christophe, Stadler Peter F, Bernhart Stephan H

机构信息

Interdisciplinary Center of Bioinformatics, 9180 Leipzig University , Härtelstraße 16-18, D-04107 Leipzig, Germany.

Bioinformatics Group, 9180 Institute of Computer Science, Leipzig University , Härtelstraße 16-18, D-04107 Leipzig, Germany.

出版信息

J Integr Bioinform. 2024 Dec 11;21(4). doi: 10.1515/jib-2024-0031. eCollection 2024 Dec 1.

Abstract

Many publicly available databases provide disease related data, that makes it possible to link genomic data to medical and meta-data. The cancer genome atlas (TCGA), for example, compiles tens of thousand of datasets covering a wide array of cancer types. Here we introduce an interactive and highly automatized TCGA-based workflow that links and analyses epigenomic and transcriptomic data with treatment and survival data in order to identify possible biomarkers that indicate treatment success. TREMSUCS-TCGA is flexible with respect to type of cancer and treatment and provides standard methods for differential expression analysis or DMR detection. Furthermore, it makes it possible to examine several cancer types together in a pan-cancer type approach. Parallelisation and reproducibility of all steps is ensured with the workflowmanagement system Snakemake. TREMSUCS-TCGA produces a comprehensive single report file which holds all relevant results in descriptive and tabular form that can be explored in an interactive manner. As a showcase application we describe a comprehensive analysis of the available data for the combination of patients with squamous cell carcinomas of head and neck, cervix and lung treated with cisplatin, carboplatin and the combination of carboplatin and paclitaxel. The best ranked biomarker candidates are discussed in the light of the existing literature, indicating plausible causal relationships to the relevant cancer entities.

摘要

许多公开可用的数据库提供与疾病相关的数据,这使得将基因组数据与医学数据和元数据相链接成为可能。例如,癌症基因组图谱(TCGA)汇编了数以万计涵盖多种癌症类型的数据集。在此,我们介绍一种基于TCGA的交互式且高度自动化的工作流程,该流程将表观基因组和转录组数据与治疗及生存数据相链接并进行分析,以识别可能指示治疗成功的生物标志物。TREMSUCS-TCGA在癌症类型和治疗方面具有灵活性,并提供差异表达分析或DMR检测的标准方法。此外,它使得以泛癌类型方法一起检查多种癌症类型成为可能。工作流管理系统Snakemake确保了所有步骤的并行化和可重复性。TREMSUCS-TCGA生成一个全面的单一报告文件,该文件以描述性和表格形式保存所有相关结果,这些结果可以以交互式方式进行探索。作为一个展示应用,我们描述了对接受顺铂、卡铂以及卡铂和紫杉醇联合治疗的头颈部、宫颈和肺鳞状细胞癌患者的可用数据的综合分析。根据现有文献讨论了排名靠前的生物标志物候选物,表明它们与相关癌症实体之间可能存在因果关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aaf/11698617/72558443402e/j_jib-2024-0031_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验