Suppr超能文献

基于扩散加权磁共振成像(DW-MRI)的缺血性中风患者受累区域的端到端深度学习患者水平分类

End-to-end deep learning patient level classification of affected territory of ischemic stroke patients in DW-MRI.

作者信息

Koska Ilker Ozgur, Selver Alper, Gelal Fazıl, Uluc Muhsın Engın, Çetinoğlu Yusuf Kenan, Yurttutan Nursel, Serındere Mehmet, Dicle Oğuz

机构信息

Department of Radiology, Behçet Uz Children's Hospital, Izmir, Turkey.

Department of Biomedical Technologies, Dokuz Eylül Universtiy The Graduate School of Natural and Applied Sciences, Buca, Izmir, Turkey.

出版信息

Neuroradiology. 2025 Jan;67(1):137-151. doi: 10.1007/s00234-024-03520-x. Epub 2024 Dec 10.

Abstract

PURPOSE

To develop an end-to-end DL model for automated classification of affected territory in DWI of stroke patients.

MATERIALS AND METHODS

In this retrospective multicenter study, brain DWI studies from January 2017 to April 2020 from Center 1, from June 2020 to December 2020 from Center 2, and from November 2019 to April 2020 from Center 3 were included. Four radiologists labeled images into five classes: anterior cerebral artery (ACA), middle cerebral artery (MCA), posterior circulation (PC), and watershed (WS) regions, as well as normal images. Additionally, for Center 1, clinical information was encoded as a domain knowledge vector to incorporate into image embeddings. 3D convolutional neural network (CNN) and attention gate integrated versions for direct 3D encoding, long short-term memory (LSTM-CNN), and time-distributed layer for slice-based encoding were employed. Balanced classification accuracy, macro averaged f1 score, AUC, and interrater Cohen's kappa were calculated.

RESULTS

Overall, 624 DWI MRIs from 3 centers were utilized (mean age, interval: 66.89 years, 29-95 years; 345 male) with 439 patients in the training, 103 in the validation, and 82 in the test sets. The best model was a slice-based parallel encoding model with 0.88 balanced accuracy, 0.80 macro-f1 score, and an AUC of 0.98. Clinical domain knowledge integration improved the performance with 0.93 best overall accuracy with parallel stream model embeddings and support vector machine classifiers. The mean kappa value for interrater agreement was 0.87.

CONCLUSION

Developed end-to-end deep learning models performed well in classifying affected regions from stroke in DWI.

CLINICAL RELEVANCE STATEMENT

The end-to-end deep learning model with a parallel stream encoding strategy for classifying stroke regions in DWI has performed comparably with radiologists.

摘要

目的

开发一种用于对中风患者弥散加权成像(DWI)中受影响区域进行自动分类的端到端深度学习模型。

材料与方法

在这项回顾性多中心研究中,纳入了来自中心1的2017年1月至2020年4月、中心2的2020年6月至2020年12月以及中心3的2019年11月至2020年4月的脑部DWI研究。四位放射科医生将图像分为五类:大脑前动脉(ACA)、大脑中动脉(MCA)、后循环(PC)、分水岭(WS)区域以及正常图像。此外,对于中心1,临床信息被编码为领域知识向量以纳入图像嵌入中。采用了用于直接三维编码的三维卷积神经网络(CNN)和注意力门集成版本、长短期记忆网络(LSTM-CNN)以及用于基于切片编码的时间分布层。计算了平衡分类准确率、宏平均F1分数、AUC以及评分者间的科恩kappa系数。

结果

总体而言,使用了来自3个中心的624例DWI磁共振成像(平均年龄,范围:66.89岁,29 - 95岁;345例男性),其中439例患者用于训练,103例用于验证,82例用于测试集。最佳模型是基于切片的并行编码模型,平衡准确率为0.88,宏F1分数为0.80,AUC为0.98。临床领域知识集成通过并行流模型嵌入和支持向量机分类器提高了性能,总体最佳准确率为0.93。评分者间一致性的平均kappa值为0.87。

结论

所开发的端到端深度学习模型在对DWI中风患者的受影响区域进行分类方面表现良好。

临床相关性声明

用于对DWI中风区域进行分类的具有并行流编码策略的端到端深度学习模型与放射科医生的表现相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验