IEEE Trans Neural Netw Learn Syst. 2024 Aug;35(8):11218-11230. doi: 10.1109/TNNLS.2023.3250324. Epub 2024 Aug 5.
Finding candidate molecules with favorable pharmacological activity, low toxicity, and proper pharmacokinetic properties is an important task in drug discovery. Deep neural networks have made impressive progress in accelerating and improving drug discovery. However, these techniques rely on a large amount of label data to form accurate predictions of molecular properties. At each stage of the drug discovery pipeline, usually, only a few biological data of candidate molecules and derivatives are available, indicating that the application of deep neural networks for low-data drug discovery is still a formidable challenge. Here, we propose a meta learning architecture with graph attention network, Meta-GAT, to predict molecular properties in low-data drug discovery. The GAT captures the local effects of atomic groups at the atom level through the triple attentional mechanism and implicitly captures the interactions between different atomic groups at the molecular level. GAT is used to perceive molecular chemical environment and connectivity, thereby effectively reducing sample complexity. Meta-GAT further develops a meta learning strategy based on bilevel optimization, which transfers meta knowledge from other attribute prediction tasks to low-data target tasks. In summary, our work demonstrates how meta learning can reduce the amount of data required to make meaningful predictions of molecules in low-data scenarios. Meta learning is likely to become the new learning paradigm in low-data drug discovery. The source code is publicly available at: https://github.com/lol88/Meta-GAT.
发现具有良好药理活性、低毒性和适当药代动力学特性的候选分子是药物发现中的一项重要任务。深度神经网络在加速和改进药物发现方面取得了令人瞩目的进展。然而,这些技术依赖于大量的标记数据来形成对分子性质的准确预测。在药物发现管道的每个阶段,通常只有候选分子和衍生物的少量生物学数据可用,这表明深度神经网络在低数据药物发现中的应用仍然是一个巨大的挑战。在这里,我们提出了一种基于图注意网络的元学习架构 Meta-GAT,用于在低数据药物发现中预测分子性质。GAT 通过三重注意力机制捕获原子水平上原子基团的局部效应,并在分子水平上隐式捕获不同原子基团之间的相互作用。GAT 用于感知分子化学环境和连接性,从而有效地降低样本复杂性。Meta-GAT 进一步基于双层优化开发了一种元学习策略,将元知识从其他属性预测任务转移到低数据目标任务。总之,我们的工作展示了元学习如何减少在低数据场景下对分子进行有意义预测所需的数据量。元学习很可能成为低数据药物发现中的新学习范例。源代码可在以下网址获得:https://github.com/lol88/Meta-GAT。