Schmauch Eloi, Ojanen Johannes, Galani Kyriakitsa, Jalkanen Juho, Harju Kristiina, Hollmén Maija, Kokki Hannu, Gunn Jarmo, Halonen Jari, Hartikainen Juha, Kiviniemi Tuomas, Tavi Pasi, Kaikkonen Minna U, Kellis Manolis, Linna-Kuosmanen Suvi
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA.
Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.
Nucleic Acids Res. 2025 Jan 7;53(1). doi: 10.1093/nar/gkae1145.
Single-nuclei RNA sequencing remains a challenge for many human tissues, as incomplete removal of background signal masks cell-type-specific signals and interferes with downstream analyses. Here, we present Quality Clustering (QClus), a droplet filtering algorithm targeted toward challenging samples. QClus uses additional metrics, such as cell-type-specific marker gene expression, to cluster nuclei and filter empty and highly contaminated droplets, providing reliable filtering of samples with varying number of nuclei and contamination levels. In a benchmarking analysis against seven alternative methods across six datasets, consisting of 252 samples and over 1.9 million nuclei, QClus achieved the highest quality in the greatest number of samples over all evaluated quality metrics and recorded no processing failures, while robustly retaining numbers of nuclei within the expected range. QClus combines high quality, automation and robustness with flexibility and user-adjustability, catering to diverse experimental needs and datasets.
对于许多人体组织而言,单细胞核RNA测序仍然是一项挑战,因为背景信号去除不完全会掩盖细胞类型特异性信号,并干扰下游分析。在此,我们提出了质量聚类(QClus),这是一种针对具有挑战性的样本的液滴过滤算法。QClus使用其他指标,如细胞类型特异性标记基因表达,来对细胞核进行聚类,并过滤空的和高度污染的液滴,从而为具有不同细胞核数量和污染水平的样本提供可靠的过滤。在针对六个数据集中的七种替代方法进行的基准分析中,该数据集包含252个样本和超过190万个细胞核,QClus在所有评估的质量指标上,在数量最多的样本中实现了最高质量,且未记录到处理失败情况,同时能稳健地将细胞核数量保持在预期范围内。QClus将高质量、自动化和稳健性与灵活性和用户可调节性相结合,满足了多样化的实验需求和数据集。