Teleman Matei, Gabriel Aurélie A G, Hérault Léonard, Gfeller David
Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne 1011, Switzerland.
Swiss Institute of Bioinformatics (SIB), Lausanne, Lausanne 1015, Switzerland.
Bioinformatics. 2024 Dec 26;41(1). doi: 10.1093/bioinformatics/btae734.
Spatial Transcriptomics is revolutionizing our ability to phenotypically characterize complex biological tissues and decipher cellular niches. With current technologies such as VisiumHD, thousands of genes can be detected across millions of spots (also called cells or bins depending on the technologies). Building upon the metacell concept, we present a workflow, called SuperSpot, to combine adjacent and transcriptomically similar spots into "metaspots". The process involves representing spots as nodes in a graph with edges connecting spots in spatial proximity and edge weights representing transcriptomic similarity. Hierarchical clustering is used to aggregate spots into metaspots at a user-defined resolution. We demonstrate that metaspots reduce the size and sparsity of spatial transcriptomic data and facilitate the analysis of large datasets generated with the most recent technologies.
SuperSpot is an R package available at https://github.com/GfellerLab/SuperSpot and archived on Zenodo (https://doi.org/10.5281/zenodo.14222088). The code to reproduce the figures is available at https://github.com/GfellerLab/SuperSpot/tree/main/figures (https://doi.org/10.5281/zenodo.14222088).
空间转录组学正在彻底改变我们对复杂生物组织进行表型特征描述和解读细胞生态位的能力。借助诸如VisiumHD等当前技术,可以在数百万个点(根据技术不同也称为细胞或仓)上检测数千个基因。基于元细胞概念,我们提出了一种名为SuperSpot的工作流程,将相邻且转录组相似的点组合成“元点”。该过程包括将点表示为图中的节点,用边连接空间上相邻的点,边的权重表示转录组相似性。使用层次聚类以用户定义的分辨率将点聚合成元点。我们证明,元点减小了空间转录组数据的大小和稀疏性,并便于对使用最新技术生成的大型数据集进行分析。