Suppr超能文献

SuperSpot:将空间转录组学数据粗粒度化为元斑点。

SuperSpot: coarse graining spatial transcriptomics data into metaspots.

作者信息

Teleman Matei, Gabriel Aurélie A G, Hérault Léonard, Gfeller David

机构信息

Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne 1011, Switzerland.

Swiss Institute of Bioinformatics (SIB), Lausanne, Lausanne 1015, Switzerland.

出版信息

Bioinformatics. 2024 Dec 26;41(1). doi: 10.1093/bioinformatics/btae734.

Abstract

SUMMARY

Spatial Transcriptomics is revolutionizing our ability to phenotypically characterize complex biological tissues and decipher cellular niches. With current technologies such as VisiumHD, thousands of genes can be detected across millions of spots (also called cells or bins depending on the technologies). Building upon the metacell concept, we present a workflow, called SuperSpot, to combine adjacent and transcriptomically similar spots into "metaspots". The process involves representing spots as nodes in a graph with edges connecting spots in spatial proximity and edge weights representing transcriptomic similarity. Hierarchical clustering is used to aggregate spots into metaspots at a user-defined resolution. We demonstrate that metaspots reduce the size and sparsity of spatial transcriptomic data and facilitate the analysis of large datasets generated with the most recent technologies.

AVAILABILITY AND IMPLEMENTATION

SuperSpot is an R package available at https://github.com/GfellerLab/SuperSpot and archived on Zenodo (https://doi.org/10.5281/zenodo.14222088). The code to reproduce the figures is available at https://github.com/GfellerLab/SuperSpot/tree/main/figures (https://doi.org/10.5281/zenodo.14222088).

摘要

摘要

空间转录组学正在彻底改变我们对复杂生物组织进行表型特征描述和解读细胞生态位的能力。借助诸如VisiumHD等当前技术,可以在数百万个点(根据技术不同也称为细胞或仓)上检测数千个基因。基于元细胞概念,我们提出了一种名为SuperSpot的工作流程,将相邻且转录组相似的点组合成“元点”。该过程包括将点表示为图中的节点,用边连接空间上相邻的点,边的权重表示转录组相似性。使用层次聚类以用户定义的分辨率将点聚合成元点。我们证明,元点减小了空间转录组数据的大小和稀疏性,并便于对使用最新技术生成的大型数据集进行分析。

可用性和实现方式

SuperSpot是一个R包,可在https://github.com/GfellerLab/SuperSpot获取,并在Zenodo(https://doi.org/10.5281/zenodo.14222088)上存档。重现这些图的代码可在https://github.com/GfellerLab/SuperSpot/tree/main/figures(https://doi.org/10.5281/zenodo.14222088)获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a13/11725322/64da438b3e4e/btae734f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验