Xue Shuailin, Zhu Fangfang, Chen Jinyu, Min Wenwen
School of Information Science and Engineering, Yunnan University, 650500 Yunnan, China.
School of Health and Nursing, Yunnan Open University, 650599 Kunming, China.
Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae630.
Spatial transcriptomics (ST technology allows for the detection of cellular transcriptome information while preserving the spatial location of cells. This capability enables researchers to better understand the cellular heterogeneity, spatial organization, and functional interactions in complex biological systems. However, current technological methods are limited by low resolution, which reduces the accuracy of gene expression levels. Here, we propose scstGCN, a multimodal information fusion method based on Vision Transformer and Graph Convolutional Network that integrates histological images, spot-based ST data and spatial location information to infer super-resolution gene expression profiles at single-cell level. We evaluated the accuracy of the super-resolution gene expression profiles generated on diverse tissue ST datasets with disease and healthy by scstGCN along with their performance in identifying spatial patterns, conducting functional enrichment analysis, and tissue annotation. The results show that scstGCN can predict super-resolution gene expression accurately and aid researchers in discovering biologically meaningful differentially expressed genes and pathways. Additionally, scstGCN can segment and annotate tissues at a finer granularity, with results demonstrating strong consistency with coarse manual annotations. Our source code and all used datasets are available at https://github.com/wenwenmin/scstGCN and https://zenodo.org/records/12800375.
空间转录组学(ST)技术能够在保留细胞空间位置的同时检测细胞转录组信息。这一能力使研究人员能够更好地理解复杂生物系统中的细胞异质性、空间组织和功能相互作用。然而,目前的技术方法受到低分辨率的限制,这降低了基因表达水平的准确性。在此,我们提出了scstGCN,一种基于视觉Transformer和图卷积网络的多模态信息融合方法,该方法整合了组织学图像、基于点的ST数据和空间位置信息,以推断单细胞水平的超分辨率基因表达谱。我们通过scstGCN评估了在具有疾病和健康状态的不同组织ST数据集上生成的超分辨率基因表达谱的准确性,以及它们在识别空间模式、进行功能富集分析和组织注释方面的性能。结果表明,scstGCN能够准确预测超分辨率基因表达,并帮助研究人员发现具有生物学意义的差异表达基因和通路。此外,scstGCN能够以更精细的粒度对组织进行分割和注释,结果显示与粗略的手动注释具有很强的一致性。我们的源代码和所有使用的数据集可在https://github.com/wenwenmin/scstGCN和https://zenodo.org/records/12800375获取。