Arbabi Saeed, Arbabi Vahid, Costa Lorenzo, Katen Iris Ten, Mastbergen Simon C, Seevinck Peter R, de Jong Pim A, Weinans Harrie, Jansen Mylène P, Foppen Wouter
Image Sciences Institute, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
Diagnostics (Basel). 2025 Jun 9;15(12):1469. doi: 10.3390/diagnostics15121469.
Tenosynovitis is a common feature of psoriatic arthritis (PsA) and is typically assessed using semi-quantitative magnetic resonance imaging (MRI) scoring. However, visual scoring s variability. This study evaluates a fully automated, deep-learning approach for ankle tenosynovitis segmentation and volume-based quantification from MRI in psoriatic arthritis (PsA) patients. We analyzed 364 ankle 3T MRI scans from 71 PsA patients. Four tenosynovitis pathologies were manually scored and used to create ground truth segmentations through a human-machine workflow. For each pathology, 30 annotated scans were used to train a deep-learning segmentation model based on the nnUNet framework, and 20 scans were used for testing, ensuring patient-level disjoint sets. Model performance was evaluated using Dice scores. Volumetric pathology measurements from test scans were compared to radiologist scores using Spearman correlation. Additionally, 218 serial MRI pairs were assessed to analyze the relationship between changes in pathology volume and changes in visual scores. The segmentation model achieved promising performance on the test set, with mean Dice scores ranging from 0.84 to 0.92. Pathology volumes correlated with visual scores across all test MRIs (Spearman ρ = 0.52-0.62). Volume-based quantification captured changes in inflammation over time and identified subtle progression not reflected in semi-quantitative scores. Our automated segmentation tool enables fast and accurate quantification of ankle tenosynovitis in PsA patients. It may enhance sensitivity to disease progression and complement visual scoring through continuous, volume-based metrics.
腱鞘炎是银屑病关节炎(PsA)的常见特征,通常使用半定量磁共振成像(MRI)评分进行评估。然而,视觉评分存在变异性。本研究评估了一种基于深度学习的全自动方法,用于对银屑病关节炎(PsA)患者的踝关节腱鞘炎进行分割和基于体积的量化分析。我们分析了71例PsA患者的364次踝关节3T MRI扫描。对四种腱鞘炎病变进行手动评分,并通过人机工作流程创建真实分割。对于每种病变,使用30次标注扫描训练基于nnUNet框架的深度学习分割模型,20次扫描用于测试,确保患者层面的不相交集。使用Dice分数评估模型性能。使用Spearman相关性将测试扫描的体积病理学测量结果与放射科医生的评分进行比较。此外,评估了218对连续MRI,以分析病理学体积变化与视觉评分变化之间的关系。分割模型在测试集上取得了良好的性能,平均Dice分数在0.84至0.92之间。在所有测试MRI中,病理学体积与视觉评分相关(Spearman ρ = 0.52 - 0.62)。基于体积的量化分析捕捉了炎症随时间的变化,并识别出半定量评分未反映的细微进展。我们的自动分割工具能够快速、准确地量化PsA患者的踝关节腱鞘炎。它可以提高对疾病进展的敏感性,并通过连续的基于体积的指标补充视觉评分。