Suppr超能文献

生物K变压器:一种基于预训练变压器的序列到序列模型,用于药物不良反应预测。

Bio-K-Transformer: A pre-trained transformer-based sequence-to-sequence model for adverse drug reactions prediction.

作者信息

Qiu Xihe, Shao Siyue, Wang Haoyu, Tan Xiaoyu

机构信息

School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, China.

INF Technology (Shanghai) Co., Ltd., Shanghai, China.

出版信息

Comput Methods Programs Biomed. 2025 Mar;260:108524. doi: 10.1016/j.cmpb.2024.108524. Epub 2024 Dec 6.

Abstract

BACKGROUND AND OBJECTIVE

Adverse drug reactions (ADRs) pose a serious threat to patient health, potentially resulting in severe consequences, including mortality. Accurate prediction of ADRs before drug market release is crucial for early prevention. Traditional ADR detection, relying on clinical trials and voluntary reporting, has inherent limitations. Clinical trials face challenges in capturing rare and long-term reactions due to scale and time constraints, while voluntary reporting tends to neglect mild and common reactions. Consequently, drugs on the market may carry unknown risks, leading to an increasing demand for more accurate predictions of ADRs before their commercial release. This study aims to develop a more accurate prediction model for ADRs prior to drug market release.

METHODS

We frame the ADR prediction task as a sequence-to-sequence problem and propose the Bio-K-Transformer, which integrates the transformer model with pre-trained models (i.e., Bio_ClinicalBERT and K-bert), to forecast potential ADRs. We enhance the attention mechanism of the Transformer encoder structure and adjust embedding layers to model diverse relationships between drug adverse reactions. Additionally, we employ a masking technique to handle target data. Experimental findings demonstrate a notable improvement in predicting potential adverse reactions, achieving a predictive accuracy of 90.08%. It significantly exceeds current state-of-the-art baseline models and even the fine-tuned Llama-3.1-8B and Llama3-Aloe-8B-Alpha model, while being cost-effective. The results highlight the model's efficacy in identifying potential adverse reactions with high precision, sensitivity, and specificity.

CONCLUSION

The Bio-K-Transformer significantly enhances the prediction of ADRs, offering a cost-effective method with strong potential for improving pre-market safety evaluations of pharmaceuticals.

摘要

背景与目的

药物不良反应(ADR)对患者健康构成严重威胁,可能导致包括死亡在内的严重后果。在药物上市前准确预测ADR对于早期预防至关重要。传统的ADR检测依赖于临床试验和自愿报告,存在固有的局限性。由于规模和时间限制,临床试验在捕捉罕见和长期反应方面面临挑战,而自愿报告往往忽视轻微和常见的反应。因此,市场上的药物可能存在未知风险,导致对在药物商业发布前更准确预测ADR的需求不断增加。本研究旨在开发一种在药物上市前更准确的ADR预测模型。

方法

我们将ADR预测任务构建为一个序列到序列的问题,并提出了Bio-K-Transformer,它将Transformer模型与预训练模型(即Bio_ClinicalBERT和K-bert)集成,以预测潜在的ADR。我们增强了Transformer编码器结构的注意力机制,并调整嵌入层以对药物不良反应之间的各种关系进行建模。此外,我们采用一种掩码技术来处理目标数据。实验结果表明,在预测潜在不良反应方面有显著改进,预测准确率达到90.08%。它显著超过了当前最先进 的基线模型,甚至超过了微调后的Llama-3.1-8B和Llama3-Aloe-8B-Alpha模型,同时具有成本效益。结果突出了该模型在高精度、高灵敏度和高特异性识别潜在不良反应方面的有效性。

结论

Bio-K-Transformer显著增强了ADR的预测能力,提供了一种具有成本效益的方法,在改善药品上市前安全性评估方面具有强大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验