文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

卵巢癌早期预测的创新方法:基于机器学习的可解释人工智能技术

Innovative approach towards early prediction of ovarian cancer: Machine learning- enabled XAI techniques.

作者信息

Lavanya J M Sheela, P Subbulakshmi

机构信息

School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India.

出版信息

Heliyon. 2024 Apr 15;10(9):e29197. doi: 10.1016/j.heliyon.2024.e29197. eCollection 2024 May 15.


DOI:10.1016/j.heliyon.2024.e29197
PMID:39669371
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11636890/
Abstract

Globally, ovarian cancer affects women disproportionately, causing significant morbidity and mortality rates. The early diagnosis of ovarian cancer is necessary for enhancing patient health and survival rates. This research article explores the utilization of Machine Learning (ML) techniques alongside eXplainable Artificial Intelligence (XAI) methodologies to aid in the early detection of ovarian cancer. ML techniques have recently gained popularity in developing predictive models to detect early-stage ovarian cancer. These predictions are made using XAI in a transparent and understandable way for healthcare professionals and patients. The primary aim of this study is to evaluate the effectiveness of various ovarian cancer prediction methodologies. This includes assessing K Nearest Neighbors, Support Vector Machines, Decision trees, and ensemble learning techniques such as Max Voting, Boosting, Bagging, and Stacking. A dataset of 349 patients with known ovarian cancer status was collected from Kaggle. The dataset included a comprehensive range of clinical features such as age, family history, tumor markers, and imaging characteristics. Preprocessing techniques were applied to enhance input data, including feature scaling and dimensionality reduction. A Minimum Redundancy Maximum Relevance (MRMR) algorithm was used to select the features in the model. Our experimental results demonstrate that in Support Vector Machines, we found 85 % base model accuracy and 89 % accuracy after stacking several ensemble learning techniques. With the help of XAI, complex ML algorithms can be given more profound insights into their decision-making, improving their applicability. This paper aims to introduce the best practices for integrating ML and artificial intelligence in biomarker evaluation. Building and evaluating Shapley values-based classifiers and visualizing results were the focus of our investigation. The study contributes to the field of oncology and women's health by offering a promising approach to the early diagnosis of ovarian cancer.

摘要

在全球范围内,卵巢癌对女性的影响尤为严重,导致了较高的发病率和死亡率。卵巢癌的早期诊断对于提高患者健康水平和生存率至关重要。本文探讨了如何利用机器学习(ML)技术以及可解释人工智能(XAI)方法来辅助卵巢癌的早期检测。近年来,ML技术在开发用于检测早期卵巢癌的预测模型方面颇受关注。这些预测通过XAI以一种对医疗专业人员和患者来说透明且易懂的方式进行。本研究的主要目的是评估各种卵巢癌预测方法的有效性。这包括评估K近邻算法、支持向量机、决策树以及集成学习技术,如多数投票、提升、装袋和堆叠。从Kaggle收集了一个包含349名已知卵巢癌状况患者的数据集。该数据集包括一系列全面的临床特征,如年龄、家族病史、肿瘤标志物和影像特征。应用预处理技术来增强输入数据,包括特征缩放和降维。使用最小冗余最大相关性(MRMR)算法在模型中选择特征。我们的实验结果表明,在支持向量机中,我们发现基础模型准确率为85%,在堆叠几种集成学习技术后准确率为89%。借助XAI,可以更深入地了解复杂ML算法的决策过程,提高其适用性。本文旨在介绍在生物标志物评估中整合ML和人工智能的最佳实践。构建和评估基于沙普利值的分类器并可视化结果是我们研究的重点。该研究通过提供一种有前景的卵巢癌早期诊断方法,为肿瘤学和女性健康领域做出了贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/894e19727391/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/0ff91ad4741d/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/d754a4b5796f/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/0264253e8530/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/7218a5673c1c/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/947ab37e08ce/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/b69e3584f67a/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/55535cdc8f0c/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/7ae630946807/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/db15344aa362/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/f91c29de3c0b/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/7dac4c698c3a/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/894e19727391/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/0ff91ad4741d/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/d754a4b5796f/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/0264253e8530/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/7218a5673c1c/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/947ab37e08ce/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/b69e3584f67a/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/55535cdc8f0c/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/7ae630946807/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/db15344aa362/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/f91c29de3c0b/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/7dac4c698c3a/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5929/11636890/894e19727391/gr12.jpg

相似文献

[1]
Innovative approach towards early prediction of ovarian cancer: Machine learning- enabled XAI techniques.

Heliyon. 2024-4-15

[2]
Investigating Protective and Risk Factors and Predictive Insights for Aboriginal Perinatal Mental Health: Explainable Artificial Intelligence Approach.

J Med Internet Res. 2025-4-30

[3]
Interpretable lung cancer risk prediction using ensemble learning and XAI based on lifestyle and demographic data.

Comput Biol Chem. 2025-8

[4]
Optimizing Stroke Risk Prediction: A Primary Dataset-Driven Ensemble Classifier With Explainable Artificial Intelligence.

Health Sci Rep. 2025-5-5

[5]
Systematic literature review on the application of explainable artificial intelligence in palliative care studies.

Int J Med Inform. 2025-8

[6]
Interpretable artificial intelligence (AI) for cervical cancer risk analysis leveraging stacking ensemble and expert knowledge.

Digit Health. 2025-3-25

[7]
Explainable AI-based feature importance analysis for ovarian cancer classification with ensemble methods.

Front Public Health. 2025-3-26

[8]
Explainable AI for Symptom-Based Detection of Monkeypox: a machine learning approach.

BMC Infect Dis. 2025-3-26

[9]
Explainable discovery of disease biomarkers: The case of ovarian cancer to illustrate the best practice in machine learning and Shapley analysis.

J Biomed Inform. 2023-5

[10]
A GA-stacking ensemble approach for forecasting energy consumption in a smart household: A comparative study of ensemble methods.

J Environ Manage. 2024-7

引用本文的文献

[1]
Leveraging machine learning models to evaluate immune infiltration in the ovarian cancer microenvironment: a single-cell analysis approach.

Discov Oncol. 2025-7-9

[2]
Explainable AI in early autism detection: a literature review of interpretable machine learning approaches.

Discov Ment Health. 2025-7-1

[3]
Machine learning in ovarian cancer: a bibliometric and visual analysis from 2004 to 2024.

Discov Oncol. 2025-5-13

[4]
Dual level dengue diagnosis using lightweight multilayer perceptron with XAI in fog computing environment and rule based inference.

Sci Rep. 2025-5-13

[5]
Prediction of Early Diagnosis in Ovarian Cancer Patients Using Machine Learning Approaches with Boruta and Advanced Feature Selection.

Life (Basel). 2025-4-3

[6]
Explainable AI-based feature importance analysis for ovarian cancer classification with ensemble methods.

Front Public Health. 2025-3-26

本文引用的文献

[1]
Explainable discovery of disease biomarkers: The case of ovarian cancer to illustrate the best practice in machine learning and Shapley analysis.

J Biomed Inform. 2023-5

[2]
Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond.

Inf Fusion. 2022-1

[3]
Explanation of machine learning models using shapley additive explanation and application for real data in hospital.

Comput Methods Programs Biomed. 2022-2

[4]
The false hope of current approaches to explainable artificial intelligence in health care.

Lancet Digit Health. 2021-11

[5]
Landscape of Immune Microenvironment in Epithelial Ovarian Cancer and Establishing Risk Model by Machine Learning.

J Oncol. 2021-8-26

[6]
Machine learning-based LIBS spectrum analysis of human blood plasma allows ovarian cancer diagnosis.

Biomed Opt Express. 2021-4-2

[7]
Artificial Intelligence Based on Blood Biomarkers Including CTCs Predicts Outcomes in Epithelial Ovarian Cancer: A Prospective Study.

Onco Targets Ther. 2021-5-18

[8]
Integration and interplay of machine learning and bioinformatics approach to identify genetic interaction related to ovarian cancer chemoresistance.

Brief Bioinform. 2021-11-5

[9]
Natural language processing with machine learning to predict outcomes after ovarian cancer surgery.

Gynecol Oncol. 2021-1

[10]
Predicting complete cytoreduction for advanced ovarian cancer patients using nearest-neighbor models.

J Ovarian Res. 2020-9-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索