Suppr超能文献

一种用于肺癌计算机断层扫描图像分割与分类的高效组合智能系统。

An efficient combined intelligent system for segmentation and classification of lung cancer computed tomography images.

作者信息

Sivakumar Maheswari, Chinnasamy Sundar, Ms Thanabal

机构信息

Department of AI&DS, Dhirajlal Gandhi College of Technology, Salem, Tamilnadu, India.

Department of Computer Science and Engineering, Christian College of Engineering and Technology, Dindigul, India.

出版信息

PeerJ Comput Sci. 2024 Feb 27;10:e1802. doi: 10.7717/peerj-cs.1802. eCollection 2024.

Abstract

BACKGROUND AND OBJECTIVE

One of the illnesses with most significant mortality and morbidity rates worldwide is lung cancer. From CT images, automatic lung tumor segmentation is significantly essential. However, segmentation has several difficulties, such as different sizes, variable shapes, and complex surrounding tissues. Therefore, a novel enhanced combined intelligent system is presented to predict lung cancer in this research.

METHODS

Non-small cell lung cancer should be recognized for detecting lung cancer. In the pre-processing stage, the noise in the CT images is eliminated by using an average filter and adaptive median filter, and histogram equalization is used to enhance the filtered images to enhance the lung image quality in the proposed model. The adapted deep belief network (ADBN) is used to segment the affected region with the help of network layers from the noise-removed lung CT image. Two cascaded RBMs are used for the segmentation process in the structure of ADBN, including Bernoulli-Bernoulli (BB) and Gaussian-Bernoulli (GB), and then relevant significant features are extracted. The hybrid spiral optimization intelligent-generalized rough set (SOI-GRS) approach is used to select compelling features of the CT image. Then, an optimized light gradient boosting machine (LightGBM) model using the Ensemble Harris hawk optimization (EHHO) algorithm is used for lung cancer classification.

RESULTS

LUNA 16, the Kaggle Data Science Bowl (KDSB), the Cancer Imaging Archive (CIA), and local datasets are used to train and test the proposed approach. Python and several well-known modules, including TensorFlow and Scikit-Learn, are used for the extensive experiment analysis. The proposed research accurately spot people with lung cancer according to the results. The method produced the least classification error possible while maintaining 99.87% accuracy.

CONCLUSION

The integrated intelligent system (ADBN-Optimized LightGBM) gives the best results among all input prediction models, taking performance criteria into account and boosting the system's effectiveness, hence enabling better lung cancer patient diagnosis by physicians and radiologists.

摘要

背景与目的

肺癌是全球死亡率和发病率最高的疾病之一。从CT图像中自动分割肺部肿瘤至关重要。然而,分割存在诸多困难,如肿瘤大小各异、形状多变以及周围组织复杂等。因此,本研究提出一种新型增强组合智能系统来预测肺癌。

方法

检测肺癌需识别非小细胞肺癌。在预处理阶段,使用均值滤波器和自适应中值滤波器消除CT图像中的噪声,并采用直方图均衡化对滤波后的图像进行增强,以提高所提模型中肺部图像的质量。自适应深度信念网络(ADBN)借助去噪后的肺部CT图像的网络层对病变区域进行分割。ADBN结构中使用两个级联受限玻尔兹曼机(RBM)进行分割,包括伯努利 - 伯努利(BB)和高斯 - 伯努利(GB),然后提取相关显著特征。采用混合螺旋优化智能 - 广义粗糙集(SOI - GRS)方法选择CT图像的关键特征。接着,使用基于集成哈里斯鹰优化(EHHO)算法的优化轻梯度提升机(LightGBM)模型进行肺癌分类。

结果

使用LUNA 16、Kaggle数据科学碗(KDSB)、癌症影像存档(CIA)和本地数据集对所提方法进行训练和测试。使用Python以及包括TensorFlow和Scikit - Learn在内的几个知名模块进行广泛的实验分析。根据结果,所提研究能准确识别肺癌患者。该方法在保持99.87%准确率的同时产生了尽可能小的分类误差。

结论

综合智能系统(ADBN - 优化LightGBM)在所有输入预测模型中取得了最佳结果,考虑了性能标准并提高了系统的有效性,从而使医生和放射科医生能够更好地诊断肺癌患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ceb4/11636750/ffde1d8f3321/peerj-cs-10-1802-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验