Chambolle Antonin, Delplancke Claire, Ehrhardt Matthias J, Schönlieb Carola-Bibiane, Tang Junqi
CEREMADE, Université Paris-Dauphine, Place du Maréchal De Lattre De Tassigny, 75775 Paris, France.
MOKAPLAN, INRIA Paris, Paris, France.
J Math Imaging Vis. 2024;66(3):294-313. doi: 10.1007/s10851-024-01174-1. Epub 2024 Mar 16.
In this work, we propose a new primal-dual algorithm with adaptive step sizes. The stochastic primal-dual hybrid gradient (SPDHG) algorithm with constant step sizes has become widely applied in large-scale convex optimization across many scientific fields due to its scalability. While the product of the primal and dual step sizes is subject to an upper-bound in order to ensure convergence, the selection of the ratio of the step sizes is critical in applications. Up-to-now there is no systematic and successful way of selecting the primal and dual step sizes for SPDHG. In this work, we propose a general class of adaptive SPDHG (A-SPDHG) algorithms and prove their convergence under weak assumptions. We also propose concrete parameters-updating strategies which satisfy the assumptions of our theory and thereby lead to convergent algorithms. Numerical examples on computed tomography demonstrate the effectiveness of the proposed schemes.
在这项工作中,我们提出了一种具有自适应步长的新的原始对偶算法。具有恒定步长的随机原始对偶混合梯度(SPDHG)算法因其可扩展性已在许多科学领域的大规模凸优化中得到广泛应用。虽然为了确保收敛,原始步长和对偶步长的乘积有一个上限,但步长比率的选择在应用中至关重要。到目前为止,还没有一种系统且成功的方法来为SPDHG选择原始步长和对偶步长。在这项工作中,我们提出了一类通用的自适应SPDHG(A - SPDHG)算法,并在弱假设下证明了它们的收敛性。我们还提出了满足我们理论假设的具体参数更新策略,从而得到收敛算法。计算机断层扫描的数值示例证明了所提方案的有效性。