Suppr超能文献

基于随机优化和数据驱动分裂的非光滑先验快速 MPI 重建。

Fast MPI reconstruction with non-smooth priors by stochastic optimization and data-driven splitting.

机构信息

Universität Hamburg, Department of Mathematics, Bundesstrasse 55, D-20146 Hamburg, Germany.

出版信息

Phys Med Biol. 2021 Aug 23;66(17). doi: 10.1088/1361-6560/ac176c.

Abstract

Magnetic particle images are currently most often reconstructed using classical Tikhonov regularization (i.e. anregularization term) combined with Kaczmarz method. Quality enhancing choices like sparsity promoting-regularization or TV regularization lead to problems that cannot be solved by standard Kaczmarz method. We propose to use stochastic primal-dual hybrid gradient method to gain more flexibility concerning the choice of data fitting term and regularization, respectively, and still obtain an algorithm which is at least as fast as Kaczmarz method. The proposed algorithm performs comparably to the current state-of-the-art method in terms of run time. The quality of reconstructions can be significantly improved as different regularization terms can be easily integrated. Moreover, in order to achieve further speed up of the method, we propose two new step size rules which lead to fast convergence and make the algorithm very easy to handle. We improve the performance of the algorithm further by applying a data-driven splitting scheme leading to a significant speed-up during the first iterations.

摘要

目前,大多数磁粒子图像都是使用经典的 Tikhonov 正则化(即无正则化项)结合 Kaczmarz 方法进行重建的。质量增强的选择,如稀疏正则化或 TV 正则化,会导致标准 Kaczmarz 方法无法解决的问题。我们建议使用随机原始对偶混合梯度方法,以获得更多关于数据拟合项和正则化项选择的灵活性,并且仍然获得一种至少与 Kaczmarz 方法一样快的算法。与当前最先进的方法相比,所提出的算法在运行时间方面表现相当。由于可以轻松集成不同的正则化项,因此可以显著提高重建质量。此外,为了进一步提高方法的速度,我们提出了两个新的步长规则,这导致了快速收敛,并使算法非常易于处理。通过应用数据驱动的分裂方案,我们进一步提高了算法的性能,在最初的几次迭代中显著提高了速度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验