Suppr超能文献

通过基于机器学习的电子显微镜图像分析对纳米颗粒形态进行统计表征。

Statistical Characterization of the Morphologies of Nanoparticles through Machine Learning Based Electron Microscopy Image Analysis.

作者信息

Lee Byoungsang, Yoon Seokyoung, Lee Jin Woong, Kim Yunchul, Chang Junhyuck, Yun Jaesub, Ro Jae Chul, Lee Jong-Seok, Lee Jung Heon

机构信息

School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, South Korea.

SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, South Korea.

出版信息

ACS Nano. 2020 Dec 22;14(12):17125-17133. doi: 10.1021/acsnano.0c06809. Epub 2020 Nov 24.

Abstract

Although transmission electron microscopy (TEM) may be one of the most efficient techniques available for studying the morphological characteristics of nanoparticles, analyzing them quantitatively in a statistical manner is exceedingly difficult. Herein, we report a method for mass-throughput analysis of the morphologies of nanoparticles by applying a genetic algorithm to an image analysis technique. The proposed method enables the analysis of over 150,000 nanoparticles with a high precision of 99.75% and a low false discovery rate of 0.25%. Furthermore, we clustered nanoparticles with similar morphological shapes into several groups for diverse statistical analyses. We determined that at least 1,500 nanoparticles are necessary to represent the total population of nanoparticles at a 95% credible interval. In addition, the number of TEM measurements and the average number of nanoparticles in each TEM image should be considered to ensure a satisfactory representation of nanoparticles using TEM images. Moreover, the statistical distribution of polydisperse nanoparticles plays a key role in accurately estimating their optical properties. We expect this method to become a powerful tool and aid in expanding nanoparticle-related research into the statistical domain for use in big data analysis.

摘要

尽管透射电子显微镜(TEM)可能是研究纳米颗粒形态特征最有效的技术之一,但以统计方式对其进行定量分析极其困难。在此,我们报告一种通过将遗传算法应用于图像分析技术对纳米颗粒形态进行高通量分析的方法。所提出的方法能够以99.75%的高精度和0.25%的低错误发现率分析超过150,000个纳米颗粒。此外,我们将具有相似形态形状的纳米颗粒聚类为几个组以进行各种统计分析。我们确定,在95%的可信区间内,至少需要1500个纳米颗粒来代表纳米颗粒的总体。此外,应考虑TEM测量的次数以及每个TEM图像中纳米颗粒的平均数量,以确保使用TEM图像能令人满意地呈现纳米颗粒。而且,多分散纳米颗粒的统计分布在准确估计其光学性质方面起着关键作用。我们期望这种方法成为一种强大的工具,并有助于将与纳米颗粒相关的研究扩展到统计领域以用于大数据分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验