Greenall-Ota Josephine, Yapa H Manisha, Fox Greg J, Negin Joel
Faculty of Science, University of Sydney, Sydney, NSW, Australia.
Sydney Infectious Diseases Institute, Faculty of Medicine and Health, University of Sydney, Science Rd, Sydney, NSW, 2050, Australia, 61 2 9351 2222.
JMIR Mhealth Uhealth. 2024 Dec 13;12:e55189. doi: 10.2196/55189.
Mobile health (mHealth) interventions have the potential to improve health outcomes in low- and middle-income countries (LMICs) by aiding health workers to strengthen service delivery, as well as by helping patients and communities manage and prevent diseases. It is crucial to understand how best to implement mHealth within already burdened health services to maximally improve health outcomes and sustain the intervention in LMICs.
We aimed to identify key barriers to and facilitators of the implementation of mHealth interventions for infectious diseases in LMICs, drawing on a health systems analysis framework.
We followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) checklist to select qualitative or mixed methods studies reporting on determinants of already implemented infectious disease mHealth interventions in LMICs. We searched MEDLINE, Embase, PubMed, CINAHL, the Social Sciences Citation Index, and Global Health. We extracted characteristics of the mHealth interventions and implementation experiences, then conducted an analysis of determinants using the Tailored Implementation for Chronic Diseases framework.
We identified 10,494 titles for screening, among which 20 studies met our eligibility criteria. Of these, 9 studies examined mHealth smartphone apps and 11 examined SMS text messaging interventions. The interventions addressed HIV (n=7), malaria (n=4), tuberculosis (n=4), pneumonia (n=2), dengue (n=1), human papillomavirus (n=1), COVID-19 (n=1), and respiratory illnesses or childhood infectious diseases (n=2), with 2 studies addressing multiple diseases. Within these studies, 10 interventions were intended for use by health workers and the remainder targeted patients, at-risk individuals, or community members. Access to reliable technological resources, familiarity with technology, and training and support were key determinants of implementation. Additional themes included users forgetting to use the mHealth interventions and mHealth intervention designs affecting ease of use.
Acceptance of the intervention and the capacity of existing health care system infrastructure and resources are 2 key factors affecting the implementation of mHealth interventions. Understanding the interaction between mHealth interventions, their implementation, and health systems will improve their uptake in LMICs.
移动健康(mHealth)干预措施有潜力改善低收入和中等收入国家(LMICs)的健康状况,这既可以通过帮助卫生工作者加强服务提供来实现,也可以通过帮助患者和社区管理及预防疾病来达成。了解如何在本已负担沉重的卫生服务体系中最佳地实施移动健康干预措施,对于在低收入和中等收入国家最大程度地改善健康状况并维持干预效果至关重要。
我们旨在利用卫生系统分析框架,确定低收入和中等收入国家实施传染病移动健康干预措施的关键障碍和促进因素。
我们遵循PRISMA(系统评价和Meta分析的首选报告项目)清单,选择报告低收入和中等收入国家已实施的传染病移动健康干预措施决定因素的定性或混合方法研究。我们检索了MEDLINE、Embase、PubMed、CINAHL、社会科学引文索引和全球健康数据库。我们提取了移动健康干预措施的特征和实施经验,然后使用慢性病定制实施框架对决定因素进行分析。
我们确定了10494个待筛选标题,其中20项研究符合我们的纳入标准。其中,9项研究考察了移动健康智能手机应用程序,11项研究考察了短信干预措施。这些干预措施涉及艾滋病毒(n = 7)、疟疾(n = 4)、结核病(n = 4)、肺炎(n = 2)、登革热(n = 1)、人乳头瘤病毒(n = 1)、2019冠状病毒病(n = 1)以及呼吸道疾病或儿童传染病(n = 2),有2项研究涉及多种疾病。在这些研究中,10项干预措施供卫生工作者使用,其余针对患者、高危个体或社区成员。获得可靠的技术资源、对技术的熟悉程度以及培训和支持是实施的关键决定因素。其他主题包括用户忘记使用移动健康干预措施以及移动健康干预措施的设计影响易用性。
对干预措施的接受程度以及现有医疗保健系统基础设施和资源的能力是影响移动健康干预措施实施的两个关键因素。了解移动健康干预措施、其实施与卫生系统之间的相互作用,将提高其在低收入和中等收入国家的采用率。