Suppr超能文献

利用未定义混合培养物在生物过程中生产新型能源气体。

Production of Novel Energy Gases in Bioprocesses Using Undefined Mixed Cultures.

作者信息

Hakalehto Elias, Jääskeläinen Ari

机构信息

University of Helsinki, Helsinki, Finland.

University of Eastern Finland, Kuopio, Finland.

出版信息

Adv Biochem Eng Biotechnol. 2025;189:151-188. doi: 10.1007/10_2024_267.

Abstract

Three phases of matter intermingle in various environments. The phenomena behind these fluctuations provide microbial cultures with beneficial interphase on the borderlines. Correspondingly, a bioreactor broth usually consists of a liquid phase but also contains solid particles, gas bubbles, technical surfaces, and other niches, both on a visible scale and microscopically. The diffusion limitation in the suspension is a remarkable hindrance to the reaction sequence during production. It must be overcome technically. Gas flow into the reactor could serve this purpose, and the outgoing stream or bubbling contains volatile products. The various mixing elements or gas flows should be moderated if shear forces disturb the cell growth, biochemical production, enzymatic activity, or any other crucial biological or physicochemical parameters. The focus is to optimize energy production in the form of liberated gases or their mixtures. Many combustible flows need to get purified, depending on their purpose, for example, for various engines. They provide novel sources for traffic in the air, streets, roads, and waterways, not forgetting space technology dimensions.On the other hand, industrial fuels are often used as mixtures of gases or gases with other substances. This approach may facilitate the utilization of side streams. Also, municipal energy needs can be fulfilled by microbial gases. Microbial mixed cultures could play an essential role in the big picture of sustainable industries, living of people and agriculture, exhibiting an excessive total effect on societies' multifactorial development. The gas phase is key to realizing their potential.Gaseous emissions are inherent part of all forms of microbial metabolism, both aerobic and anoxic ones. Carbon dioxide is liberated both in respiration and fermentation, but the microbiota also binds volatile carbon compounds. CO is also a raw material for plant cultivation, e.g., in greenhouses or in algal pools which both often represent the first steps of food chains. Additionally, they produce biomass to produce energy, biochemicals, nutrition, and soil improvement. Gaseous products of the mixed microbial cultures are valuable sources for energy production as purified gases (e.g., biomethane, biohydrogen) or as mixtures (e.g., bio-hythane, volatiles). These relatively simple molecules also serve as supplies for other hydrocarbons (e.g., methanol). Also, many microbial metabolites serve as fuel sources (e.g., bio-oil) and substrates for further biosynthesis. This versatility of potential technological options in energy-making and for industrial processes could offer huge opportunities for green energies and sustainable industries, transportation, or municipalities. In the agricultural sector, the complete recycling also includes the consideration of gas phase. This aspect provides increasing sources for clean food production. Moreover, the chemoautotrophic bacteria, including the archaeal strains, could emanate novel streams of biobased products for human use.The bioprocess always consists of a biological component and a reactor or vessel solution, plus its control and adjustment means. Some project examples are taken up introducing the combinations of these two technological mainstreams, which should be in "symbiosis" for the best results. This novel approach could lead the human activities in industries, agriculture, and municipalities into "no waste" situations. At the same time, new global resources will emerge for economically feasible and sustainable raw material sources and processes thereof. In this novel technological ecosystem, connectivity to biosphere will return and remain our societies on healthy foundations, thanks to the microbes and their communities. This chapter introduces some of the potentials.

摘要

物质的三相在各种环境中相互混合。这些波动背后的现象在边界处为微生物培养提供了有益的界面。相应地,生物反应器肉汤通常由液相组成,但也包含固体颗粒、气泡、技术表面和其他生态位,无论是在可见尺度还是微观尺度上。悬浮液中的扩散限制是生产过程中反应序列的一个显著障碍。必须从技术上克服它。气体流入反应器可以达到这个目的,流出的气流或气泡中含有挥发性产物。如果剪切力干扰细胞生长、生化产物生成、酶活性或任何其他关键的生物学或物理化学参数,就应该调节各种混合元件或气流。重点是以释放气体或其混合物的形式优化能量产生。许多可燃气流需要根据其用途进行净化,例如用于各种发动机。它们为空中、街道、道路和水路的交通提供了新的能源,更不用说太空技术领域了。

另一方面,工业燃料通常用作气体混合物或气体与其他物质的混合物。这种方法可能有助于副产物流的利用。此外,城市能源需求也可以通过微生物气体来满足。微生物混合培养物在可持续工业、人类生活和农业的大图景中可以发挥重要作用,对社会的多因素发展产生巨大的总体影响。气相是实现其潜力的关键。

气体排放是所有形式的微生物代谢(包括需氧和厌氧代谢)的固有组成部分。呼吸和发酵过程中都会释放二氧化碳,但微生物群落也会结合挥发性碳化合物。一氧化碳也是植物栽培的原料,例如在温室或藻类池中,这些通常都是食物链的第一步。此外,它们产生生物质以生产能源、生化物质、营养物质并改善土壤。混合微生物培养物的气态产物是有价值的能源,可作为纯化气体(如生物甲烷、生物氢气)或混合物(如生物合成气、挥发物)。这些相对简单的分子也可作为其他碳氢化合物(如甲醇)的原料。此外,许多微生物代谢产物可作为燃料来源(如生物油)和进一步生物合成的底物。这种在能源生产和工业过程中潜在技术选择的多功能性可为绿色能源和可持续工业、交通或城市提供巨大机遇。在农业领域,完全循环利用还包括对气相的考虑。这方面为清洁食品生产提供了越来越多的资源。此外,包括古菌菌株在内的化学自养细菌可以产生供人类使用的新型生物基产品流。

生物过程总是由生物成分、反应器或容器溶液及其控制和调节手段组成。本文列举了一些项目实例,介绍了这两种技术主流的组合方式,二者应“共生”才能取得最佳效果。这种新方法可以使工业、农业和城市中的人类活动进入“无浪费”状态。同时,将出现新的全球资源,用于经济可行且可持续的原材料来源及其加工过程。在这个新型技术生态系统中,与生物圈的联系将得以恢复,并使我们的社会建立在健康的基础上,这都要归功于微生物及其群落。本章介绍了其中的一些潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验