Suppr超能文献

免疫相关内质网应激基因在脓毒症诱导的心肌病中的作用:来自生物信息学分析的新见解

Role of immune-related endoplasmic reticulum stress genes in sepsis-induced cardiomyopathy: Novel insights from bioinformatics analysis.

作者信息

Zhen Wan-Jing, Zhang Yan, Fu Wei-Dong, Fu Xiao-Lei, Yan Xin

机构信息

Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.

Department of Anesthesiology, Zhuzhou Central Hospital (Zhuzhou Hospital Affiliated to Xiangya School of Medicine), Zhuzhou, Hunan Province, China.

出版信息

PLoS One. 2024 Dec 13;19(12):e0315582. doi: 10.1371/journal.pone.0315582. eCollection 2024.

Abstract

BACKGROUND

The current study aims to elucidate the key molecular mechanisms linked to endoplasmic reticulum stress (ERS) in the pathogenesis of sepsis-induced cardiomyopathy (SIC) and offer innovative therapeutic targets for SIC.

METHODS

The study downloaded dataset GSE79962 from the Gene Expression Omnibus database and acquired the ERS-related gene set from GeneCards. It utilized weighted gene co-expression network analysis (WGCNA) and conducted differential expression analysis to identify key modules and genes associated with SIC. The SIC hub genes were determined by the intersection of WGCNA-based hubs, DEGs, and ERS-related genes, followed by protein-protein interaction (PPI) network construction. Enrichment analyses, encompassing GO, KEGG, GSEA, and GSVA, were performed to elucidate potential biological pathways. The CIBERSORT algorithm was employed to analyze immune infiltration patterns. Diagnostic and prognostic models were developed to assess the clinical significance of hub genes in SIC. Additionally, in vivo experiments were conducted to validate the expression of hub genes.

RESULTS

Differential analysis revealed 1031 differentially expressed genes (DEGs), while WGCNA identified a hub module with 1327 key genes. Subsequently, 13 hub genes were pinpointed by intersecting with ERS-related genes. NOX4, PDHB, SCP2, ACTC1, DLAT, EDN1, and NSDHL emerged as hub ERS-related genes through the protein-protein interaction network, with their diagnostic values confirmed via ROC curves. Diagnostic models incorporating five genes (NOX4, PDHB, ACTC1, DLAT, NSDHL) were validated using the LASSO algorithm, highlighting only the prognostic significance of serum PDHB levels in predicting the survival of septic patients. Additionally, decreased PDHB mRNA and protein expression levels were observed in the cardiac tissue of septic mice compared to control mice.

CONCLUSIONS

This study elucidated the interplay between metabolism and the immune microenvironment in SIC, providing fresh perspectives on the investigation of potential SIC pathogenesis. PDHB emerged as a significant biomarker of SIC, with implications on its progression through the regulation of ERS and metabolism.

摘要

背景

本研究旨在阐明脓毒症诱导的心肌病(SIC)发病机制中与内质网应激(ERS)相关的关键分子机制,并为SIC提供创新的治疗靶点。

方法

本研究从基因表达综合数据库下载数据集GSE79962,并从基因卡片获取ERS相关基因集。利用加权基因共表达网络分析(WGCNA)并进行差异表达分析,以识别与SIC相关的关键模块和基因。通过基于WGCNA的枢纽基因、差异表达基因(DEG)和ERS相关基因的交集确定SIC枢纽基因,随后构建蛋白质-蛋白质相互作用(PPI)网络。进行包括基因本体(GO)、京都基因与基因组百科全书(KEGG)、基因集富集分析(GSEA)和基因集变异分析(GSVA)在内的富集分析,以阐明潜在的生物学途径。采用CIBERSORT算法分析免疫浸润模式。开发诊断和预后模型以评估枢纽基因在SIC中的临床意义。此外,进行体内实验以验证枢纽基因的表达。

结果

差异分析揭示了1031个差异表达基因(DEG),而WGCNA确定了一个包含1327个关键基因的枢纽模块。随后,通过与ERS相关基因的交集确定了13个枢纽基因。通过蛋白质-蛋白质相互作用网络,NOX4、PDHB、SCP2、ACTC1、DLAT、EDN1和NSDHL成为枢纽ERS相关基因,其诊断价值通过ROC曲线得到证实。使用LASSO算法验证了包含五个基因(NOX4、PDHB、ACTC1、DLAT、NSDHL)的诊断模型,突出显示血清PDHB水平在预测脓毒症患者生存方面仅具有预后意义。此外,与对照小鼠相比,在脓毒症小鼠的心脏组织中观察到PDHB mRNA和蛋白质表达水平降低。

结论

本研究阐明了SIC中代谢与免疫微环境之间的相互作用,为潜在的SIC发病机制研究提供了新的视角。PDHB成为SIC的重要生物标志物,通过调节ERS和代谢对其进展产生影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d2b/11642931/24361971e8ef/pone.0315582.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验