Suppr超能文献

使用数据驱动的呼吸门控和弹性PET-CT配准的无运动PET成像的验证及临床影响

Validation and clinical impact of motion-free PET imaging using data-driven respiratory gating and elastic PET-CT registration.

作者信息

Dias André H, Schaefferkoetter Joshua, Madsen Josefine R, Barkholt Trine Ø, Vendelbo Mikkel H, Rodell Anders B, Birge Noah, Schleyer Paul, Munk Ole L

机构信息

Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark.

Siemens Medical Solutions USA, Inc, Knoxville, TN, USA.

出版信息

Eur J Nucl Med Mol Imaging. 2025 Apr;52(5):1924-1936. doi: 10.1007/s00259-024-07032-x. Epub 2024 Dec 14.

Abstract

PURPOSE

Clinical whole-body (WB) PET images can be compensated for respiratory motion using data-driven gating (DDG). However, PET DDG images may still exhibit motion artefacts at the diaphragm if the CT is acquired in a different respiratory phase than the PET image. This study evaluates the combined use of PET DDG and a deep-learning model (AIR-PETCT) for elastic registration of CT (WarpCT) to the non attenuation- and non scatter-corrected PET image (PET NAC), enabling improved PET reconstruction.

METHODS

The validation cohort included 20 patients referred for clinical FDG PET/CT, undergoing two CT scans: a free respiration CT and an end-expiration breath-hold CT. AIR-PETCT registered each CT to the PET NAC and PET DDG NAC images. The image quality of PET and PET DDG images reconstructed using CTs and WarpCTs was evaluated by three blinded readers. Additionally, a clinical impact cohort of 20 patients with significant "banana" artefacts from FDG, PSMA, and DOTATOC scans was assessed for image quality and tumor-to-background ratios.

RESULTS

AIR-PETCT was robust and generated consistent WarpCTs when registering different CTs to the same PET NAC. The use of WarpCT instead of CT consistently led to equivalent or improved PET image quality. The algorithm significantly reduced "banana" artefacts and improved lesion-to-background ratios around the diaphragm. The blinded clinicians clearly preferred PET DDG images reconstructed using WarpCT.

CONCLUSION

AIR-PETCT effectively reduces respiratory motion artefacts from PET images, while improving lesion contrast. The combination of PET DDG and WarpCT holds promise for clinical application, improving PET image evaluation and diagnostic confidence.

摘要

目的

临床全身(WB)PET图像可使用数据驱动门控(DDG)对呼吸运动进行补偿。然而,如果CT在与PET图像不同的呼吸相位采集,PET DDG图像在膈肌处仍可能出现运动伪影。本研究评估PET DDG与深度学习模型(AIR-PETCT)联合用于将CT(WarpCT)弹性配准到未进行衰减和散射校正的PET图像(PET NAC),以实现改进的PET重建。

方法

验证队列包括20例因临床FDG PET/CT检查而转诊的患者,他们接受了两次CT扫描:一次自由呼吸CT和一次呼气末屏气CT。AIR-PETCT将每个CT配准到PET NAC和PET DDG NAC图像。由三位不知情的阅片者评估使用CT和WarpCT重建的PET和PET DDG图像的图像质量。此外,对20例来自FDG、PSMA和DOTATOC扫描且有明显“香蕉”伪影的患者组成的临床影响队列进行图像质量和肿瘤与背景比值评估。

结果

AIR-PETCT在将不同的CT配准到同一PET NAC时稳健且生成一致的WarpCT。使用WarpCT而非CT始终能带来同等或更好的PET图像质量。该算法显著减少了“香蕉”伪影并提高了膈肌周围的病变与背景比值。不知情的临床医生明显更倾向于使用WarpCT重建的PET DDG图像。

结论

AIR-PETCT有效减少PET图像中的呼吸运动伪影,同时提高病变对比度。PET DDG与WarpCT的结合在临床应用方面具有前景,可改善PET图像评估和诊断信心。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验