Suppr超能文献

BAMITA:张量数组的贝叶斯多重填补法

BAMITA: Bayesian multiple imputation for tensor arrays.

作者信息

Jiang Ziren, Li Gen, Lock Eric F

机构信息

Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, 2221 University Avenue SE, Minneapolis, MN 55414, United States.

Department of Biostatistics, School of Public Health, University of Michigan, 1415 Washington Heights, M4210, Ann Arbor, MI 48109, United States.

出版信息

Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae047.

Abstract

Data increasingly take the form of a multi-way array, or tensor, in several biomedical domains. Such tensors are often incompletely observed. For example, we are motivated by longitudinal microbiome studies in which several timepoints are missing for several subjects. There is a growing literature on missing data imputation for tensors. However, existing methods give a point estimate for missing values without capturing uncertainty. We propose a multiple imputation approach for tensors in a flexible Bayesian framework, that yields realistic simulated values for missing entries and can propagate uncertainty through subsequent analyses. Our model uses efficient and widely applicable conjugate priors for a CANDECOMP/PARAFAC (CP) factorization, with a separable residual covariance structure. This approach is shown to perform well with respect to both imputation accuracy and uncertainty calibration, for scenarios in which either single entries or entire fibers of the tensor are missing. For two microbiome applications, it is shown to accurately capture uncertainty in the full microbiome profile at missing timepoints and used to infer trends in species diversity for the population. Documented R code to perform our multiple imputation approach is available at https://github.com/lockEF/MultiwayImputation.

摘要

在多个生物医学领域,数据越来越多地采用多路数组或张量的形式。此类张量往往是不完全观测到的。例如,我们受到纵向微生物组研究的启发,在该研究中,有几个受试者的多个时间点数据缺失。关于张量缺失数据插补的文献越来越多。然而,现有方法给出的是缺失值的点估计,而没有捕捉到不确定性。我们在一个灵活的贝叶斯框架中提出了一种张量多重插补方法,该方法能为缺失条目生成逼真的模拟值,并能在后续分析中传播不确定性。我们的模型对CANDECOMP/PARAFAC(CP)分解使用高效且广泛适用的共轭先验,具有可分离的残差协方差结构。对于张量中单个条目或整个纤维缺失的情况,该方法在插补精度和不确定性校准方面均表现良好。对于两个微生物组应用,结果表明它能准确捕捉缺失时间点处完整微生物组概况中的不确定性,并用于推断总体物种多样性的趋势。执行我们多重插补方法的R代码文档可在https://github.com/lockEF/MultiwayImputation获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验