Kaye Alexander R, Obolski Uri, Sun Lantao, Hart William S, Hurrell James W, Tildesley Michael J, Thompson Robin N
Mathematics Institute, University of Warwick, Coventry, UK; Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, UK.
Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel; Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel.
Lancet Planet Health. 2024 Dec;8(12):e1079-e1087. doi: 10.1016/S2542-5196(24)00238-9.
Aedes aegypti spread pathogens affecting humans, including dengue, Zika, and yellow fever viruses. Anthropogenic climate change is altering the spatial distribution of Ae aegypti and therefore the locations at risk of vector-borne disease. In addition to climate change, natural climate variability, resulting from internal atmospheric processes and interactions between climate system components (eg, atmosphere-land and atmosphere-ocean interactions), determines climate outcomes. However, the role of natural climate variability in modifying the effects of anthropogenic climate change on future environmental suitability for Ae aegypti has not been assessed fully. In this study, we aim to assess uncertainty arising from natural climate variability in projections of Ae aegypti suitability up to the year 2100.
In this mathematical modelling study, we developed an ecological model in which Ae aegypti population dynamics depend on climate variables (temperature and rainfall). We used 100 projections of future climate from the Community Earth System Model, a comprehensive climate model that simulates natural climate variability as well as anthropogenic climate change, in combination with our ecological model to generate a range of equally plausible scenarios describing the global distribution of suitable conditions for Ae aegypti up to 2100. Each of these scenarios corresponds to a single climate projection, allowing us to explore the difference in Ae aegypti suitability between the most-suitable and the least-suitable projections.
Our key finding was that natural climate variability generates substantial variation in future projections of environmental suitability for Ae aegypti. Even for projections generated under the same Shared Socioeconomic Pathway (SSP) scenario (SSP3-7.0), in 2100 climatic conditions in London might be suitable for Ae aegypti for 0-5 months of the year, depending on natural climate variability.
Natural climate variability affects environmental suitability for important disease vectors. Some regions could experience vector-borne disease outbreaks earlier than expected under climate change alone.
Engineering and Physical Sciences Research Council and Wellcome Trust.
埃及伊蚊传播影响人类的病原体,包括登革热、寨卡和黄热病病毒。人为气候变化正在改变埃及伊蚊的空间分布,进而改变媒介传播疾病的风险区域。除气候变化外,由内部大气过程以及气候系统各组成部分之间的相互作用(例如大气 - 陆地和大气 - 海洋相互作用)导致的自然气候变率,也决定着气候状况。然而,自然气候变率在改变人为气候变化对未来埃及伊蚊环境适宜性影响方面所起的作用尚未得到充分评估。在本研究中,我们旨在评估到2100年自然气候变率在埃及伊蚊适宜性预测中所产生的不确定性。
在这项数学建模研究中,我们开发了一个生态模型,其中埃及伊蚊种群动态取决于气候变量(温度和降雨)。我们使用了来自社区地球系统模型的100个未来气候预测数据,这是一个综合气候模型,可模拟自然气候变率以及人为气候变化,并结合我们的生态模型,生成一系列同样合理的情景,描述到2100年全球适合埃及伊蚊生存条件的分布情况。这些情景中的每一个都对应一个单一的气候预测,使我们能够探究最适宜和最不适宜预测之间埃及伊蚊适宜性的差异。
我们的主要发现是,自然气候变率在未来埃及伊蚊环境适宜性预测中产生了显著差异。即使是在相同的共享社会经济路径(SSP)情景(SSP3 - 7.0)下生成的预测中,到公元2100年,伦敦的气候条件可能在一年中的0至5个月适合埃及伊蚊生存,这取决于自然气候变率。
自然气候变率影响重要病媒的环境适宜性。在仅考虑气候变化的情况下,一些地区可能比预期更早经历媒介传播疾病的爆发。
工程和物理科学研究委员会以及惠康信托基金会。