Suppr超能文献

用于加速扩散张量和峰度成像的条件生成扩散深度学习

Conditional generative diffusion deep learning for accelerated diffusion tensor and kurtosis imaging.

作者信息

Martin Phillip, Altbach Maria, Bilgin Ali

机构信息

Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721, United States of America; Department of Medical Imaging, University of Arizona, Tucson, AZ 85724, United States of America.

Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85724, United States of America; Department of Medical Imaging, University of Arizona, Tucson, AZ 85724, United States of America.

出版信息

Magn Reson Imaging. 2025 Apr;117:110309. doi: 10.1016/j.mri.2024.110309. Epub 2024 Dec 13.

Abstract

PURPOSE

The purpose of this study was to develop DiffDL, a generative diffusion probabilistic model designed to produce high-quality diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) metrics from a reduced set of diffusion-weighted images (DWIs). This model addresses the challenge of prolonged data acquisition times in diffusion MRI while preserving metric accuracy.

METHODS

DiffDL was trained using data from the Human Connectome Project, including 300 training/validation subjects and 50 testing subjects. High-quality DTI and DKI metrics were generated using many DWIs and combined with subsets of DWIs to form training pairs. A UNet architecture was used for denoising, trained over 500 epochs with a linear noise schedule. Performance was evaluated against conventional DTI/DKI modeling and a reference UNet model using normalized mean absolute error (NMAE), peak signal-to-noise ratio (PSNR), and Pearson correlation coefficient (PCC).

RESULTS

DiffDL showed significant improvements in the quality and accuracy of fractional anisotropy (FA) and mean diffusivity (MD) maps compared to conventional methods and the baseline UNet model. For DKI metrics, DiffDL outperformed conventional DKI modeling and the UNet model across various acceleration scenarios. Quantitative analysis demonstrated superior NMAE, PSNR, and PCC values for DiffDL, capturing the full dynamic range of DTI and DKI metrics. The generative nature of DiffDL allowed for multiple predictions, enabling uncertainty quantification and enhancing performance.

CONCLUSION

The DiffDL framework demonstrated the potential to significantly reduce data acquisition times in diffusion MRI while maintaining high metric quality. Future research should focus on optimizing computational demands and validating the model with clinical cohorts and standard MRI scanners.

摘要

目的

本研究旨在开发DiffDL,这是一种生成式扩散概率模型,旨在从一组简化的扩散加权图像(DWI)中生成高质量的扩散张量成像(DTI)和扩散峰度成像(DKI)指标。该模型解决了扩散磁共振成像中数据采集时间过长的挑战,同时保持指标准确性。

方法

使用来自人类连接体项目的数据对DiffDL进行训练,包括300名训练/验证受试者和50名测试受试者。使用多个DWI生成高质量的DTI和DKI指标,并与DWI子集组合形成训练对。采用UNet架构进行去噪,通过线性噪声调度在500个epoch上进行训练。使用归一化平均绝对误差(NMAE)、峰值信噪比(PSNR)和皮尔逊相关系数(PCC),与传统DTI/DKI建模和参考UNet模型进行性能评估。

结果

与传统方法和基线UNet模型相比,DiffDL在分数各向异性(FA)和平均扩散率(MD)图的质量和准确性方面有显著提高。对于DKI指标,DiffDL在各种加速场景下均优于传统DKI建模和UNet模型。定量分析表明,DiffDL的NMAE、PSNR和PCC值更高,能够捕捉DTI和DKI指标的完整动态范围。DiffDL的生成性质允许进行多次预测,从而实现不确定性量化并提高性能。

结论

DiffDL框架显示出在显著减少扩散磁共振成像数据采集时间的同时保持高指标质量的潜力。未来的研究应专注于优化计算需求,并在临床队列和标准磁共振成像扫描仪上验证该模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验