Narayanasamy Sankar Raju, Shelby Megan L, Chatterjee Chandraki, Zhou Jenny, Rose Samuel, Orlans Julian, Ghosh Swagatha, Cardenas Anne Marie, Botha Sabine, Gu Kevin, Petit Donald, Liu Zhongrui, Fornasiero Francesco, Lisova Stella, Schriber Elyse, Rosenberg Daniel, Umanath Thej Tumkur, Russi Silvia, Segelke Brent, Kuhl Tonya L, Trebbin Martin, Basu Shibom, de Sanctis Daniele, Frank Matthias
Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, USA.
Materials Engineering Division, Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, USA.
bioRxiv. 2025 Jul 18:2025.07.13.663488. doi: 10.1101/2025.07.13.663488.
The advent of ultrabright fourth generation X-ray light sources, including X-ray free-electron lasers (XFELs) and diffraction limited synchrotrons, has significantly advanced the field of serial macromolecular protein crystallography (SX). SX experiments demand a continuous supply of fresh microcrystalline sample, ideally while minimizing overall sample consumption. Here, we introduce a novel, robust, and user-friendly polymer film technology that can be assembled in various configurations to encapsulate protein microcrystals and provide sample support for SX. This system provides an efficient hydration barrier over extended durations while maintaining an exceptionally low X-ray background. We have validated this technology by assessing hydration retention under both ambient and ultra-high vacuum conditions, and by evaluating its mechanical stability under XFEL pulses. Furthermore, we have demonstrated the effectiveness of this approach in two room-temperature serial crystallography studies to determine the structure of a 24 kDa Rapid Encystment Phenotype (REP24) protein from .
包括X射线自由电子激光(XFEL)和衍射极限同步加速器在内的超亮第四代X射线光源的出现,极大地推动了串行大分子蛋白质晶体学(SX)领域的发展。SX实验需要持续供应新鲜的微晶样品,理想情况下要尽量减少总体样品消耗。在此,我们介绍一种新颖、稳健且用户友好的聚合物薄膜技术,该技术可以以各种配置组装,用于封装蛋白质微晶并为SX提供样品支撑。该系统在较长时间内提供高效的水合屏障,同时保持极低的X射线背景。我们通过评估在环境和超高真空条件下的水合保留情况,以及通过评估其在XFEL脉冲下的机械稳定性,验证了这项技术。此外,我们在两项室温串行晶体学研究中证明了该方法的有效性,以确定来自[具体来源未提及]的24 kDa快速包囊表型(REP24)蛋白的结构。