Lyubimov Artem Y, Murray Thomas D, Koehl Antoine, Araci Ismail Emre, Uervirojnangkoorn Monarin, Zeldin Oliver B, Cohen Aina E, Soltis S Michael, Baxter Elizabeth L, Brewster Aaron S, Sauter Nicholas K, Brunger Axel T, Berger James M
Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA.
Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA.
Acta Crystallogr D Biol Crystallogr. 2015 Apr;71(Pt 4):928-40. doi: 10.1107/S1399004715002308. Epub 2015 Mar 27.
X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressable points in a trap array from a small volume (<10 µl) of a pre-existing slurry grown off-chip. The device can be mounted on a standard goniostat for conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be useful for data collection at synchrotron sources.
X射线自由电子激光器(XFELs)有望实现从难以在同步辐射源进行数据收集的样品中收集可解释的衍射数据。然而,目前需要更高效的样品输送方法,以尽量减少微晶材料的消耗,从而使XFEL源能够应用于广泛的具有生物学重要性的具有挑战性的结构目标。本文展示了一种微流控芯片,其中微晶可以从芯片外生长的少量(<10微升)预先存在的浆液中捕获到阱阵列中固定的、可寻址的点上。该装置可以安装在标准测角仪上,在室温下进行衍射实验,无需快速冷却。使用模型系统(鸡蛋清溶菌酶)进行的原理验证测试证明了微流控方法在晶体收获方面的高效性,仅从265个单晶静态图像中就能够收集到足够的数据,从而确定和精修蛋白质的结构。这项工作表明,微流控捕获装置可以很容易地用于促进从以传统实验室形式生长的蛋白质微晶中收集数据,当冷冻保存存在问题或只有少量晶体可用时能够实现分析。这种微流控捕获装置在同步辐射源的数据收集中可能也很有用。