Suppr超能文献

体外受精患者阴道与子宫内膜微生物群的差异特征

Differential characteristics of vaginal versus endometrial microbiota in IVF patients.

作者信息

Polifke Alina, von Schwedler Annika, Gulba Rebecca, Bensmann Ralf, Dilthey Alexander, Nassar Najib N R, Finzer Patrick

机构信息

dus.ana, Düsseldorf Analytik, Immermannstrasse 65 A, 40210, Düsseldorf, Germany.

Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Universitätsklinikum Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.

出版信息

Sci Rep. 2024 Dec 16;14(1):30508. doi: 10.1038/s41598-024-82466-9.

Abstract

Abnormal female reproductive tract microbiota are associated with gynecological disorders such as endometriosis or chronic endometritis and may affect reproductive outcomes. However, the differential diagnostic utility of the vaginal or the endometrial microbiome and the impact of important technical covariates such as the choice of hypervariable regions for 16 S rRNA sequencing remain to be characterized. The aim of this retrospective study was to compare vaginal and endometrial microbiomes in IVF patients diagnosed with implantation failure (IF) and/or recurrent pregnancy loss (RPL) and to investigate the overlap between established vaginal and endometrial microbiome classification schemes. An additional aim was to characterize to which extent the choice of V1-V2 or V2-V3 16 S rRNA sequencing schemes influences the characterization of genital microbiomes. We compared microbiome composition based on V1-V2 rRNA sequencing between matched vaginal smear and endometrial pipelle-obtained biopsy samples (n = 71); in a sub-group (n = 61), we carried out a comparison between V1-V2 and V2-V3 rRNA sequencing. Vaginal and endometrial microbiomes were found to be Lactobacillus-dominated in the majority of patients, with the most abundant Lactobacillus species typically shared between sample types of same patient. Endometrial microbiomes were found to be more diverse than vaginal microbiomes (average Shannon entropy = 1.89 v/s 0.75, p = 10) and bacterial species such as Corynebacterium sp., Staphylococcus sp., Prevotella sp. and Propionibacterium sp. were found to be enriched in the endometrial samples. The use of two widely used clinical classification schemes to detect microbiome dysbiosis in the reproductive tract often led to inconsistent results vaginal community state type (CST) IV, which is associated with bacterial vaginosis, was detected in 9.8% of patients; however, 31,0% of study participants had a non-Lactobacillus-dominated (NLD) endometrial microbiome associated with unfavorable reproductive outcomes. Results based on V2-V3 rRNA sequencing were generally consistent with V1-V2-based; differences were observed for a small number of species, e.g. Bifidobacterium sp., Propionibacterium sp. and Staphylococcus sp. and with respect to slightly increased detection rates of CST IV and NLD. Our study showed that endometrial microbiomes differ substantially from their vaginal counterparts, the application of a trans-cervical sampling method notwithstanding. Characterization of endometrial microbiomes may contribute to the improved detection of women with an unfavorable reproductive outcome prognosis in IVF patients..

摘要

异常的女性生殖道微生物群与子宫内膜异位症或慢性子宫内膜炎等妇科疾病有关,可能会影响生殖结局。然而,阴道或子宫内膜微生物组的鉴别诊断效用以及重要技术协变量(如16S rRNA测序高变区的选择)的影响仍有待明确。这项回顾性研究的目的是比较诊断为植入失败(IF)和/或复发性流产(RPL)的体外受精(IVF)患者的阴道和子宫内膜微生物组,并研究既定的阴道和子宫内膜微生物组分类方案之间的重叠情况。另一个目的是确定V1-V2或V2-V3 16S rRNA测序方案的选择在多大程度上影响生殖道微生物组的特征。我们比较了基于V1-V2 rRNA测序的配对阴道涂片和子宫内膜吸管活检样本(n = 71)之间的微生物组组成;在一个亚组(n = 61)中,我们比较了V1-V2和V2-V3 rRNA测序。在大多数患者中,阴道和子宫内膜微生物组以乳酸杆菌为主,同一患者不同样本类型中最丰富的乳酸杆菌种类通常相同。发现子宫内膜微生物组比阴道微生物组更多样化(平均香农熵=1.89对0.75,p = 10),并且在子宫内膜样本中发现棒状杆菌属、葡萄球菌属、普雷沃菌属和丙酸杆菌属等细菌种类富集。使用两种广泛使用的临床分类方案来检测生殖道微生物组生态失调往往会导致不一致的结果。9.8%的患者检测到与细菌性阴道病相关的阴道群落状态类型(CST)IV;然而,31.0%的研究参与者的子宫内膜微生物组以非乳酸杆菌为主(NLD),这与不良生殖结局相关。基于V2-V3 rRNA测序的结果总体上与基于V1-V2的结果一致;在少数物种(如双歧杆菌属、丙酸杆菌属和葡萄球菌属)以及CST IV和NLD的检测率略有增加方面观察到差异。我们的研究表明,尽管采用了经宫颈采样方法,但子宫内膜微生物组与其阴道对应物有很大不同。子宫内膜微生物组的特征可能有助于改善对IVF患者中生殖结局预后不良的女性的检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/11649765/a38881fbec93/41598_2024_82466_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验