Suppr超能文献

电阻式开关器件的TCAD模拟:ReRAM配置对神经形态计算的影响。

TCAD Simulation of Resistive Switching Devices: Impact of ReRAM Configuration on Neuromorphic Computing.

作者信息

Kim Seonggyeom, Lee Jonghwan

机构信息

Department of System Semiconductor Engineering, Sangmyung University, Cheonan 31066, Republic of Korea.

出版信息

Nanomaterials (Basel). 2024 Nov 21;14(23):1864. doi: 10.3390/nano14231864.

Abstract

This paper presents a method for modeling ReRAM in TCAD and validating its accuracy for neuromorphic systems. The data obtained from TCAD are used to analyze the accuracy of the neuromorphic system. The switching behaviors of ReRAM are implemented using the kinetic Monte Carlo (KMC) approach. Realistic ReRAM characteristics are obtained through the use of the trap-assisted tunneling (TAT) model and thermal equations. HfO-AlO-based ReRAM offers improved switching behaviors compared to HfO-based ReRAM. The variation in conductance depends on the structure of the ReRAM. The conductance extracted from TCAD is validated in the neuromorphic system using the MNIST (Modified National Institute of Standards and Technology) dataset.

摘要

本文提出了一种在TCAD中对电阻式随机存取存储器(ReRAM)进行建模并验证其在神经形态系统中准确性的方法。从TCAD获得的数据用于分析神经形态系统的准确性。ReRAM的开关行为采用动力学蒙特卡罗(KMC)方法实现。通过使用陷阱辅助隧穿(TAT)模型和热方程获得了实际的ReRAM特性。与基于HfO的ReRAM相比,基于HfO-AlO的ReRAM具有更好的开关行为。电导的变化取决于ReRAM的结构。使用MNIST(美国国家标准与技术研究院修改版)数据集在神经形态系统中验证了从TCAD提取的电导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef9e/11643058/060a1dd8fae0/nanomaterials-14-01864-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验