Suppr超能文献

压电生物聚合物:能量收集与生物医学应用的进展

Piezoelectric Biopolymers: Advancements in Energy Harvesting and Biomedical Applications.

作者信息

Xu Menghan, Wen Yongxian, Shi Zhuqun, Xiong Chuanxi, Zhu Fangju, Yang Quanling

机构信息

School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.

School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.

出版信息

Polymers (Basel). 2024 Nov 27;16(23):3314. doi: 10.3390/polym16233314.

Abstract

Biodegradable piezoelectric polymers have emerged as a hot research focus in bioelectronics, energy-harvesting systems, and biomedical applications, as well as in sustainable future development. Biopolymers possess plenty of features which make them promising candidates for next-generation electronic technologies, including biocompatibility, degradability, and flexibility. This review discusses piezoelectric biopolymers, focusing on the relationship between coupling mechanisms, material structures, and piezoelectric performance. Processing techniques such as annealing, mechanical drawing, and poling are introduced and further studied in terms of achieving high piezoelectric performance. This work reviews the strategies for enhancing piezoelectric properties via molecular engineering, nano structuring, and the incorporation of additives. Furthermore, the applications of these biopolymers in energy harvesting and biomedicine are provided, with a discussion of their potential in degradable bioelectronic devices. There are still challenges in optimizing piezoelectric performance and ensuring stability. Our research is expected to provide an understanding of these challenges and help to achieve a wider application of piezoelectric biopolymers.

摘要

可生物降解的压电聚合物已成为生物电子学、能量收集系统、生物医学应用以及未来可持续发展领域的一个热门研究焦点。生物聚合物具有诸多特性,使其成为下一代电子技术的有潜力候选材料,包括生物相容性、可降解性和柔韧性。本综述讨论了压电生物聚合物,重点关注耦合机制、材料结构与压电性能之间的关系。介绍了诸如退火、机械拉伸和极化等加工技术,并就实现高压电性能对其进行了进一步研究。这项工作综述了通过分子工程、纳米结构化和添加添加剂来提高压电性能的策略。此外,还介绍了这些生物聚合物在能量收集和生物医学方面的应用,并讨论了它们在可降解生物电子器件中的潜力。在优化压电性能和确保稳定性方面仍然存在挑战。我们的研究有望增进对这些挑战的理解,并有助于实现压电生物聚合物更广泛的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33d7/11644150/72fe945f2e02/polymers-16-03314-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验