Suppr超能文献

由酶级联反应驱动的纳米马达的动力学

Dynamics of Nanomotors Propelled by Enzyme Cascade Reactions.

作者信息

Hu Jia-Qi, Zhao Rui, Cui Ru-Fei, Kou Jian-Long, Chen Jiang-Xing

机构信息

School of Physics, Hangzhou Normal University, Hangzhou 311121, China.

Department of Physics, Hangzhou Dianzi University, Hangzhou 310027, China.

出版信息

Int J Mol Sci. 2024 Nov 23;25(23):12586. doi: 10.3390/ijms252312586.

Abstract

Enzyme-powered nanomotors have attracted significant attention in materials science and biomedicine for their biocompatibility, versatility, and the use of biofuels in biological environments. Here, we employ a hybrid mesoscale method combining molecular dynamics and multi-particle collision dynamics (MD-MPC) to study the dynamics of nanomotors powered by enzyme reactions. Two cascade enzymes are constructed to be layered on the same surface of a Janus colloid, providing a confined space that greatly enhances reaction efficiency. Simulations indicate that such a configuration significantly improves the utilization of intermediate products and, consequently, increases the self-propulsion of the Janus motor. By presenting the gradient fields of substrates and products, as well as the hydrodynamics surrounding the motor, we explore the underlying mechanism behind the enhanced autonomous velocity. Additionally, we discuss the improvements in environmental safety of the modified motor, which may shed light on the fabrication of biocatalytic nano-machines in experiments.

摘要

酶驱动的纳米马达因其生物相容性、多功能性以及在生物环境中使用生物燃料的特性,在材料科学和生物医学领域引起了广泛关注。在此,我们采用一种结合分子动力学和多粒子碰撞动力学的混合中尺度方法(MD-MPC)来研究由酶反应驱动的纳米马达的动力学。构建了两种级联酶并将其分层置于双面胶体的同一表面上,提供了一个能极大提高反应效率的受限空间。模拟结果表明,这种构型显著提高了中间产物的利用率,从而增加了双面马达的自推进力。通过呈现底物和产物的梯度场以及马达周围的流体动力学,我们探究了自主速度提高背后的潜在机制。此外,我们还讨论了改性马达在环境安全性方面的改进,这可能为实验中生物催化纳米机器的制造提供思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b912/11641574/02072325e06f/ijms-25-12586-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验