Cornella-Barba Guillem, Farrens Andria J, Johnson Christopher A, Garcia-Fernandez Luis, Chan Vicky, Reinkensmeyer David J
Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA 92697, USA.
Rancho Los Amigos National Rehabilitation Center, Rancho Research Institute, Downey, CA 90242, USA.
Sensors (Basel). 2024 Nov 21;24(23):7434. doi: 10.3390/s24237434.
Many medical conditions impair proprioception but there are few easy-to-deploy technologies for assessing proprioceptive deficits. Here, we developed a method-called "OpenPoint"-to quantify upper extremity (UE) proprioception using only a webcam as the sensor. OpenPoint automates a classic neurological test: the ability of a person to use one hand to point to a finger on their other hand with vision obscured. Proprioception ability is quantified with pointing error in the frontal plane measured by a deep-learning-based, computer vision library (MediaPipe). In a first experiment with 40 unimpaired adults, pointing error significantly increased when we replaced the target hand with a fake hand, verifying that this task depends on the availability of proprioceptive information from the target hand, and that we can reliably detect this dependence with computer vision. In a second experiment, we quantified UE proprioceptive ability in 16 post-stroke participants. Individuals post stroke exhibited increased pointing error ( < 0.001) that was correlated with finger proprioceptive error measured with an independent, robotic assessment (r = 0.62, = 0.02). These results validate a novel method to assess UE proprioception ability using affordable computer technology, which provides a potential means to democratize quantitative proprioception testing in clinical and telemedicine environments.
许多医学病症会损害本体感觉,但用于评估本体感觉缺陷的易于部署的技术却很少。在此,我们开发了一种名为“OpenPoint”的方法,仅使用网络摄像头作为传感器来量化上肢(UE)的本体感觉。OpenPoint自动执行一项经典的神经学测试:让一个人在视觉被遮挡的情况下用一只手指向另一只手上的一根手指的能力。本体感觉能力通过基于深度学习的计算机视觉库(MediaPipe)测量的额平面指向误差来量化。在对40名未受损成年人进行的首次实验中,当我们用假手替换目标手时,指向误差显著增加,这证实了该任务依赖于来自目标手的本体感觉信息,并且我们可以通过计算机视觉可靠地检测到这种依赖性。在第二项实验中,我们对16名中风后参与者的上肢本体感觉能力进行了量化。中风后个体的指向误差增加(<0.001),这与通过独立的机器人评估测量的手指本体感觉误差相关(r = 0.62, = 0.02)。这些结果验证了一种使用经济实惠的计算机技术评估上肢本体感觉能力的新方法,这为在临床和远程医疗环境中实现定量本体感觉测试的普及提供了一种潜在手段。