Suppr超能文献

老年人社区活动能力、活动空间与跌倒状态的关系。

Relationship of Community Mobility, Vital Space, and Faller Status in Older Adults.

作者信息

Robles Cruz Diego, Lira Belmar Andrea, Fleury Anthony, Lam Méline, Castro Andrade Rossana M, Puebla Quiñones Sebastián, Taramasco Toro Carla

机构信息

Escuela de Ingeniería Civil Informática, Universidad de Valparaíso, Valparaíso 2361827, Chile.

Centro de Estudios del Movimiento Humano, Escuela de Kinesiología, Facultad de Salud y Odontología, Universidad Diego Portales, Santiago 8370076, Chile.

出版信息

Sensors (Basel). 2024 Nov 29;24(23):7651. doi: 10.3390/s24237651.

Abstract

UNLABELLED

Community mobility, encompassing both active (e.g., walking) and passive (e.g., driving) transport, plays a crucial role in maintaining autonomy and social interaction among older adults. This study aimed to quantify community mobility in older adults and explore the relationship between GPS- and accelerometer-derived metrics and fall risk.

METHODS

A total of 129 older adults, with and without a history of falls, were monitored over an 8 h period using GPS and accelerometer data. Three experimental conditions were evaluated: GPS data alone, accelerometer data alone, and a combination of both. Classification models, including Random Forest (RF), Support Vector Machines (SVMs), and K-Nearest Neighbors (KNN), were employed to classify participants based on their fall history.

RESULTS

For GPS data alone, RF achieved 74% accuracy, while SVM and KNN reached 67% and 62%, respectively. Using accelerometer data, RF achieved 95% accuracy, and both SVM and KNN achieved 90%. Combining GPS and accelerometer data improved model performance, with RF reaching 97% accuracy, SVM achieving 95%, and KNN 87%.

CONCLUSION

The integration of GPS and accelerometer data significantly enhances the accuracy of distinguishing older adults with and without a history of falls. These findings highlight the potential of sensor-based approaches for accurate fall risk assessment in community-dwelling older adults.

摘要

未标注

社区出行,包括主动出行(如步行)和被动出行(如驾车),在维持老年人的自主性和社交互动方面起着至关重要的作用。本研究旨在量化老年人的社区出行情况,并探讨基于全球定位系统(GPS)和加速度计得出的指标与跌倒风险之间的关系。

方法

使用GPS和加速度计数据,对129名有或没有跌倒史的老年人进行了8小时的监测。评估了三种实验条件:仅使用GPS数据、仅使用加速度计数据以及两者结合。采用分类模型,包括随机森林(RF)、支持向量机(SVM)和K近邻(KNN),根据参与者的跌倒史对他们进行分类。

结果

仅使用GPS数据时,RF的准确率达到74%,而SVM和KNN分别达到67%和62%。使用加速度计数据时,RF的准确率达到95%,SVM和KNN均达到90%。将GPS和加速度计数据相结合提高了模型性能,RF的准确率达到97%,SVM为95%,KNN为87%。

结论

GPS和加速度计数据的整合显著提高了区分有跌倒史和无跌倒史老年人的准确率。这些发现凸显了基于传感器的方法在准确评估社区居住老年人跌倒风险方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd7/11644970/65211e0d0ddb/sensors-24-07651-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验