Tan Xueyun, Pan Feng, Zhan Na, Wang Sufei, Dong Zegang, Li Yan, Yang Guanghai, Huang Bo, Duan Yanran, Xia Hui, Cao Yaqi, Zhou Min, Lv Zhilei, Huang Qi, Tian Shan, Zhang Liang, Zhou Mengmeng, Yang Lian, Jin Yang
Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Disease, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
iScience. 2024 Nov 19;27(12):111421. doi: 10.1016/j.isci.2024.111421. eCollection 2024 Dec 20.
Evaluating the invasiveness of lung adenocarcinoma is crucial for determining the appropriate surgical strategy, impacting postoperative outcomes. This study developed a multimodality model combining radiomics, intraoperative frozen section (FS) pathology, and clinical indicators to predict invasion status. The study enrolled 1,424 patients from two hospitals, divided into multimodal training, radiology testing, and pathology testing cohorts. A prospective validation cohort of 114 patients was selected between March and May 2023. The radiomics + pathology + clinical indicators multimodality model (multi-RPC model) achieved an area under the curve (AUC) of 0.921 (95% confidence interval [CI] 0.899-0.939) in the multimodal training cohort and 0.939 (95% CI 0.878-0.975) in the validation cohort, outperforming single- and dual-modality models. The multi-RPC model's predictive accuracy of 0.860 (95% CI 0.782-0.918) suggests that it could significantly reduce inappropriate surgical procedures, enhancing precision oncology by integrating multimodal information to guide surgical decisions.
评估肺腺癌的侵袭性对于确定合适的手术策略至关重要,会影响术后结果。本研究开发了一种结合放射组学、术中冰冻切片(FS)病理学和临床指标的多模态模型,以预测侵袭状态。该研究纳入了两家医院的1424例患者,分为多模态训练、放射学测试和病理学测试队列。在2023年3月至5月期间选择了114例患者的前瞻性验证队列。放射组学+病理学+临床指标多模态模型(多RPC模型)在多模态训练队列中的曲线下面积(AUC)为0.921(95%置信区间[CI]0.899-0.939),在验证队列中为0.939(95%CI0.878-0.975),优于单模态和双模态模型。多RPC模型0.860(95%CI0.782-0.918)的预测准确性表明,它可以显著减少不适当的手术程序,通过整合多模态信息来指导手术决策,提高精准肿瘤学水平。