Suppr超能文献

利用先进的深度学习网络在真实世界数据中提高胸部 X 光多疾病诊断能力。

Enhancing Multi-disease Diagnosis of Chest X-rays with Advanced Deep-learning Networks in Real-world Data.

机构信息

Putnam Science Academy, Putnam, CT, USA.

Neusoft Medical Systems Co., Ltd, Shenyang, China.

出版信息

J Digit Imaging. 2023 Aug;36(4):1332-1347. doi: 10.1007/s10278-023-00801-4. Epub 2023 Mar 29.

Abstract

The current artificial intelligence (AI) models are still insufficient in multi-disease diagnosis for real-world data, which always present a long-tail distribution. To tackle this issue, a long-tail public dataset, "ChestX-ray14," which involved fourteen (14) disease labels, was randomly divided into the train, validation, and test sets with ratios of 0.7, 0.1, and 0.2. Two pretrained state-of-the-art networks, EfficientNet-b5 and CoAtNet-0-rw, were chosen as the backbones. After the fully-connected layer, a final layer of 14 sigmoid activation units was added to output each disease's diagnosis. To achieve better adaptive learning, a novel loss (L) was designed, which coalesced reweighting and tail sample focus. For comparison, a pretrained ResNet50 network with weighted binary cross-entropy loss (L) was used as a baseline, which showed the best performance in a previous study. The overall and individual areas under the receiver operating curve (AUROC) for each disease label were evaluated and compared among different models. Group-score-weighted class activation mapping (Group-CAM) is applied for visual interpretations. As a result, the pretrained CoAtNet-0-rw + L showed the best overall AUROC of 0.842, significantly higher than ResNet50 + L (AUROC: 0.811, p = 0.037). Group-CAM presented that the model could pay the proper attention to lesions for most disease labels (e.g., atelectasis, edema, effusion) but wrong attention for the other labels, such as pneumothorax; meanwhile, mislabeling of the dataset was found. Overall, this study presented an advanced AI diagnostic model achieving a significant improvement in the multi-disease diagnosis of chest X-rays, particularly in real-world data with challenging long-tail distributions.

摘要

当前的人工智能 (AI) 模型在处理真实世界数据中的多疾病诊断方面仍然存在不足,这些数据通常呈现长尾分布。为了解决这个问题,我们随机将一个长尾巴公共数据集“ChestX-ray14”分为训练集、验证集和测试集,比例为 0.7、0.1 和 0.2。选择了两个预先训练的最先进的网络,EfficientNet-b5 和 CoAtNet-0-rw,作为骨干。在全连接层之后,添加了一个最终的 14 个 sigmoid 激活单元层,以输出每种疾病的诊断。为了实现更好的自适应学习,设计了一种新的损失 (L),它合并了重新加权和长尾样本焦点。为了进行比较,我们使用了之前研究中表现最好的带有加权二分类交叉熵损失 (L)的预先训练的 ResNet50 网络作为基线。评估了不同模型的每个疾病标签的整体和个体接收者操作曲线 (AUROC),并进行了比较。应用群组评分加权类激活映射 (Group-CAM) 进行可视化解释。结果表明,预先训练的 CoAtNet-0-rw+L 表现出最佳的整体 AUROC 为 0.842,明显高于 ResNet50+L (AUROC:0.811,p=0.037)。Group-CAM 表明,该模型可以为大多数疾病标签(如肺不张、水肿、胸腔积液)的病变提供适当的关注,但对于其他标签(如气胸)则提供错误的关注;同时,还发现了数据集的错误标记。总的来说,本研究提出了一种先进的 AI 诊断模型,在处理胸部 X 光片的多疾病诊断方面取得了显著的改进,特别是在具有挑战性的长尾分布的真实世界数据中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5986/10406745/d973a67bffff/10278_2023_801_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验