Sah Anjali, Gupta Amit, Garg Sanil, Yadav Neel, Khan Maroof Ahmad, Das Chandan J
All India Institute of Medical Sciences, Ansari Nagar East, New Delhi, 110029, India.
Abdom Radiol (NY). 2025 Jun;50(6):2586-2594. doi: 10.1007/s00261-024-04746-2. Epub 2024 Dec 17.
To assess diagnostic accuracy of perfusion CT (pCT) based biomarkers in differentiating clear-cell renal cell carcinoma (ccRCC) from non-ccRCC.
This retrospective study comprised 95 patients with RCCs (70 ccRCCs and 25 non-ccRCCs) who had perfusion CT (pCT) before surgery between January 2017 and December 2022. Two readers independently recorded PCT parameters [blood flow (BF), blood volume (BV), mean transit time (MTT), and time to peak (TTP)] by drawing a circular ROI on the tumor. The open-source program "Labelme" was used to create a polygonal bounding box to outline tumor borders. The intraclass correlation coefficient (ICC) was used to determine interreader agreement. The pCT model was evaluated using multivariable logistic regression analysis with the STATA 18 program to determine the importance of each of these characteristics in predicting the type of tumor.
Clear cell RCC had significantly greater MIP and lower TTP values than non-clear cell RCC (p < 0.05). RCCs showed considerably higher TTP, MTT, and lower MIP values than the normal renal cortex (p < 0.05). At a threshold of 129 HU, MIP had an AUC of 0.78, sensitivity and specificity of 80% and 70%, respectively, according to ROC analysis.
pCT has a high diagnostic accuracy in distinguishing between ccRCC and non-ccRCC tumors; Clinical relevance: A non-invasive, accurate, reliable, and reproducible imaging biomarker for RCC subtype prediction is possible on pCT, which may be significant for evaluating the response to antiangiogenic therapy.
评估基于灌注CT(pCT)的生物标志物在鉴别透明细胞肾细胞癌(ccRCC)与非ccRCC方面的诊断准确性。
本回顾性研究纳入了2017年1月至2022年12月期间95例术前行灌注CT(pCT)检查的肾细胞癌患者(70例ccRCC和25例非ccRCC)。两名阅片者通过在肿瘤上绘制圆形感兴趣区(ROI)独立记录PCT参数[血流量(BF)、血容量(BV)、平均通过时间(MTT)和达峰时间(TTP)]。使用开源程序“Labelme”创建多边形边界框以勾勒肿瘤边界。组内相关系数(ICC)用于确定阅片者间的一致性。使用STATA 18程序通过多变量逻辑回归分析评估pCT模型,以确定这些特征在预测肿瘤类型中的重要性。
透明细胞RCC的最大密度投影(MIP)显著高于非透明细胞RCC,TTP值显著低于非透明细胞RCC(p < 0.05)。RCC的TTP、MTT显著高于正常肾皮质,MIP值显著低于正常肾皮质(p < 0.05)。根据ROC分析,在阈值为129 HU时,MIP的曲线下面积(AUC)为0.78,灵敏度和特异度分别为80%和70%。
pCT在区分ccRCC和非ccRCC肿瘤方面具有较高的诊断准确性;临床意义:基于pCT有可能获得一种用于RCC亚型预测的非侵入性、准确、可靠且可重复的成像生物标志物,这对于评估抗血管生成治疗的反应可能具有重要意义。