Suppr超能文献

通过基因组数据质量控制加强动物育种——综述

Enhancing animal breeding through quality control in genomic data - a review.

作者信息

Lee Jungjae, Jung Jong Hyun, Oh Sang-Hyon

机构信息

Jenomics Jenetics Company, Pyeongtaek 17869, Korea.

Jung P&C Institute, Yongin 16950, Korea.

出版信息

J Anim Sci Technol. 2024 Nov;66(6):1099-1108. doi: 10.5187/jast.2024.e92. Epub 2024 Nov 30.

Abstract

High-throughput genotyping and sequencing has revolutionized animal breeding by providing access to vast amounts of genomic data to facilitate precise selection for desirable traits. This shift from traditional methods to genomic selection provides dense marker information for predicting genetic variants. However, the success of genomic selection heavily depends on the accuracy and quality of the genomic data. Inaccurate or low-quality data can lead to flawed predictions, compromising breeding programs and reducing genetic gains. Therefore, stringent quality control (QC) measures are essential at every stage of data processing. QC in genomic data involves managing single nucleotide polymorphism (SNP) quality, assessing call rates, and filtering based on minor allele frequency (MAF) and Hardy-Weinberg equilibrium (HWE). High-quality SNP data is crucial because genotyping errors can bias the estimates of breeding values. Cost-effective low-density genotyping platforms often require imputation to deduce missing genotypes. QC is vital for genomic selection, genome-wide association studies (GWAS), and population genetics analyses because it ensures data accuracy and reliability. This paper reviews QC strategies for genomic data and emphasizes their applications in animal breeding programs. By examining various QC tools and methods, this review highlights the importance of data integrity in achieving successful outcomes in genomic selection, GWAS, and population analyses. Furthermore, this review covers the critical role of robust QC measures in enhancing the reliability of genomic predictions and advancing animal breeding practices.

摘要

高通量基因分型和测序通过提供大量基因组数据,便于对理想性状进行精确选择,从而彻底改变了动物育种。从传统方法向基因组选择的这种转变为预测遗传变异提供了密集的标记信息。然而,基因组选择的成功在很大程度上取决于基因组数据的准确性和质量。不准确或低质量的数据可能导致有缺陷的预测,损害育种计划并减少遗传增益。因此,在数据处理的每个阶段都必须采取严格的质量控制(QC)措施。基因组数据的质量控制包括管理单核苷酸多态性(SNP)质量、评估检出率以及基于次要等位基因频率(MAF)和哈迪-温伯格平衡(HWE)进行筛选。高质量的SNP数据至关重要,因为基因分型错误可能会使育种值的估计产生偏差。具有成本效益的低密度基因分型平台通常需要进行插补以推断缺失的基因型。质量控制对于基因组选择、全基因组关联研究(GWAS)和群体遗传学分析至关重要,因为它确保了数据的准确性和可靠性。本文综述了基因组数据的质量控制策略,并强调了它们在动物育种计划中的应用。通过研究各种质量控制工具和方法,本综述强调了数据完整性在基因组选择、GWAS和群体分析中取得成功结果的重要性。此外,本综述涵盖了稳健的质量控制措施在提高基因组预测可靠性和推进动物育种实践方面的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87ce/11647403/4694dcfd1d47/jast-66-6-1099-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验