Suppr超能文献

过氧化物酶体肉桂酸辅酶A连接酶对苯甲酸和水杨酸生物合成的物种及器官特异性贡献。

Species- and organ-specific contribution of peroxisomal cinnamate:CoA ligases to benzoic and salicylic acid biosynthesis.

作者信息

Wang Yukang, Miao Huiying, Qiu Jiehua, Liu Menghui, Jin Gaochen, Zhang Wenxuan, Song Shuyan, Fan Pengxiang, Xin Xiufang, Hu Jianping, Li Ran, Pan Ronghui

机构信息

State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.

ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, China.

出版信息

Plant Cell. 2024 Dec 23;37(1). doi: 10.1093/plcell/koae329.

Abstract

Salicylic acid (SA) is a prominent defense hormone whose basal level, organ-specific accumulation, and physiological role vary widely among plant species. Of the 2 known pathways of plant SA biosynthesis, the phenylalanine ammonia lyase (PAL) pathway is more ancient and universal but its biosynthetic and physiological roles in diverse plant species remain unclear. Studies in which the PAL pathway is specifically or completely inhibited, as well as a direct comparison of diverse species and different organs within the same species, are needed. To this end, we analyzed the PAL pathway in rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), 2 distantly related model plants whose basal SA levels and distributions differ tremendously at the organism and tissue levels. Based on our recent identification of the rice peroxisomal cinnamate:CoA ligases (CNLs), we identified 2 peroxisomal CNLs from Arabidopsis and showed CNL as the most functionally specific enzyme among the known enzymes of the PAL pathway. We then revealed the species- and organ-specific contribution of the PAL pathway to benzoic and salicylic acid biosynthesis and clarified its physiological importance in rice and Arabidopsis. Our findings highlight the necessity to consider species and organ types in future SA-related studies and may help to breed new disease-resistant crops.

摘要

水杨酸(SA)是一种重要的防御激素,其基础水平、器官特异性积累和生理作用在不同植物物种间差异很大。在已知的植物SA生物合成的两条途径中,苯丙氨酸解氨酶(PAL)途径更为古老和普遍,但其在不同植物物种中的生物合成和生理作用仍不清楚。需要开展PAL途径被特异性或完全抑制的研究,以及对不同物种和同一物种内不同器官进行直接比较的研究。为此,我们分析了水稻(Oryza sativa)和拟南芥(Arabidopsis thaliana)中的PAL途径,这两种亲缘关系较远的模式植物,其基础SA水平和分布在生物体和组织水平上差异极大。基于我们最近对水稻过氧化物酶体肉桂酸:辅酶A连接酶(CNLs)的鉴定,我们从拟南芥中鉴定出了两种过氧化物酶体CNLs,并表明CNL是PAL途径已知酶中功能最具特异性的酶。然后,我们揭示了PAL途径对苯甲酸和水杨酸生物合成的物种和器官特异性贡献,并阐明了其在水稻和拟南芥中的生理重要性。我们的研究结果强调了在未来与SA相关的研究中考虑物种和器官类型的必要性,并可能有助于培育新的抗病作物。

相似文献

8
Analysis of disease resistance of ZmERS4 -overexpressing rice.过表达ZmERS4水稻的抗病性分析
PLoS One. 2025 Jul 1;20(7):e0325062. doi: 10.1371/journal.pone.0325062. eCollection 2025.

本文引用的文献

10
Salicylic Acid: Biosynthesis and Signaling.水杨酸:生物合成与信号转导。
Annu Rev Plant Biol. 2021 Jun 17;72:761-791. doi: 10.1146/annurev-arplant-081320-092855. Epub 2021 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验