Held Noelle A, Krishna Aswin, Crippa Donat, Battaje Rachana Rao, Devaux Alexander J, Dragan Anastasia, Manhart Michael
Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8006, Switzerland.
Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Switzerland.
Proc Natl Acad Sci U S A. 2024 Dec 24;121(52):e2400304121. doi: 10.1073/pnas.2400304121. Epub 2024 Dec 18.
Resource availability dictates how fast and how much microbial populations grow. Quantifying the relationship between microbial growth and resource concentrations makes it possible to promote, inhibit, and predict microbial activity. Microbes require many resources, including macronutrients (e.g., carbon and nitrogen), micronutrients (e.g., metals), and complex nutrients like vitamins and amino acids. When multiple resources are scarce, as frequently occurs in nature, microbes may experience resource colimitation in which more than one resource simultaneously limits growth. Despite growing evidence for colimitation, the data are difficult to interpret and compare due to a lack of quantitative measures of colimitation and systematic tests of resource conditions. We hypothesize that microbes experience a continuum of nutrient limitation states and that nutrient colimitation is common in the laboratory and in nature. To address this, we develop a quantitative theory of resource colimitation that captures the range of possible limitation states and describes how they can change dynamically with resource conditions. We apply this approach to clonal populations of to show that colimitation occurs in common laboratory conditions. We also show that growth rate and growth yield are colimited differently, reflecting the different underlying biology of these traits. Finally, we analyze environmental data to provide intuition for the continuum of limitation and colimitation conditions in nature. Altogether our results provide a quantitative framework for understanding and quantifying colimitation of microbes in biogeochemical, biotechnology, and human health contexts.
资源可用性决定了微生物种群生长的速度和数量。量化微生物生长与资源浓度之间的关系使得促进、抑制和预测微生物活性成为可能。微生物需要多种资源,包括大量营养素(如碳和氮)、微量营养素(如金属)以及维生素和氨基酸等复杂营养素。当多种资源稀缺时,这在自然界中经常发生,微生物可能会经历资源共同限制,即不止一种资源同时限制生长。尽管有越来越多的证据表明存在共同限制,但由于缺乏共同限制的定量测量方法和对资源条件的系统测试,这些数据难以解释和比较。我们假设微生物会经历一系列营养限制状态,并且营养共同限制在实验室和自然界中都很常见。为了解决这个问题,我们开发了一种资源共同限制的定量理论,该理论涵盖了可能的限制状态范围,并描述了它们如何随资源条件动态变化。我们将这种方法应用于[具体微生物名称]的克隆群体,以表明共同限制在常见的实验室条件下会发生。我们还表明,生长速率和生长产量受到的共同限制不同,这反映了这些性状不同的潜在生物学特性。最后,我们分析环境数据,以直观了解自然界中限制和共同限制条件的连续统一体。总之,我们的结果为在生物地球化学、生物技术和人类健康背景下理解和量化微生物的共同限制提供了一个定量框架。