Suppr超能文献

3D打印钛椎间融合器设计的优化。第1部分:下沉的体外生物力学研究。

Optimization of 3D-printed titanium interbody cage design. Part 1: in vitro biomechanical study of subsidence.

作者信息

Farber S Harrison, Oldham Alton J, O'Neill Luke K, Sawa Anna G U, Ratliff Alexis C, Doomi Ahmed, Pereira Bernardo de Andrada, Uribe Juan S, Kelly Brian P, Turner Jay D

机构信息

Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA.

Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA.

出版信息

Spine J. 2025 May;25(5):1050-1059. doi: 10.1016/j.spinee.2024.12.002. Epub 2024 Dec 16.

Abstract

BACKGROUND CONTEXT

Cage subsidence is a complication of interbody fusion associated with poor clinical outcomes. 3D-printed titanium interbody cages allow for the alteration of features such as stiffness and porosity. However, the influence of these features on subsidence and their biological effects on fusion have not been rigorously evaluated.

PURPOSE

This 2-part study sought to determine how changes in 3D-printed titanium cage parameters affect subsidence using an in vitro bone model (Part 1) and biological fusion using an in vivo sheep model (Part 2).

STUDY DESIGN

Biomechanical foam block model.

METHODS

In Part 1 of this study, 9 implant types were tested (8 per implant type). The implant types included 7 3D-printed titanium interbody cages with various surface areas, porosities, and surface topographies, along with 1 standard polyetheretherketone (PEEK) cage and 1 solid titanium cage. Subsidence testing was performed in a standardized foam block model using 2 different densities of foam. Digital imaging correlation was used to determine the relative vertical displacement of the interbody cage-foam block construct.

RESULTS

Subsidence decreased as the surface contact area with the bone model increased (all p≤.01). Increased porous surface topography increased subsidence, while a nonporous surface significantly decreased subsidence (all p<.001). Subsidence did not differ based on changes in implant porosity (all p≥.35) or material property/modulus (all p≥.19). Subsidence was significantly decreased with the higher density foam (p<.001). The stiffness of the implant was affected by porosity (all p<.02) and smooth surface topography (p=.01) but not by lumen size (all p≥.15). Stiffness did not differ between porous titanium and PEEK implants (p=.96), which were both less stiff than solid titanium implants (both p<.001). Surface area negatively correlated with subsidence (r=-0.786, p=.012) but was not correlated with stiffness (r=0.560, p=.12).

CONCLUSIONS

Implant surface area and surface topography greatly influenced interbody subsidence. Apparent stiffness, implant porosity, and material property did not affect subsidence in this in vitro model. Higher foam density also led to lower subsidence than low-density foam. Biological response in the in vivo setting likely also influences clinical subsidence, which is evaluated in the companion study (Part 2).

CLINICAL SIGNIFICANCE

This study provides valuable information regarding the new 3D-printed titanium technology. We showed that cage surface area and surface topography were the implant design parameters that had the greatest influence on the development of interbody subsidence. Moreover, bone mineral density was the factor that had the greatest effect on subsidence prevention. These data support patient optimization before surgery and emphasize the importance of endplate protection during surgery.

摘要

背景

椎间融合器下沉是椎间融合的一种并发症,与不良的临床结果相关。3D打印钛质椎间融合器能够改变诸如刚度和孔隙率等特征。然而,这些特征对下沉的影响及其对融合的生物学效应尚未得到严格评估。

目的

这项分为两部分的研究旨在确定3D打印钛质融合器参数的变化如何使用体外骨模型影响下沉(第一部分)以及使用体内绵羊模型影响生物融合(第二部分)。

研究设计

生物力学泡沫块模型。

方法

在本研究的第一部分,测试了9种植入物类型(每种植入物类型8个)。植入物类型包括7种具有不同表面积、孔隙率和表面形貌的3D打印钛质椎间融合器,以及1个标准聚醚醚酮(PEEK)融合器和1个实心钛融合器。在标准化的泡沫块模型中使用两种不同密度的泡沫进行下沉测试。使用数字图像相关技术确定椎间融合器 - 泡沫块结构的相对垂直位移。

结果

随着与骨模型的表面接触面积增加,下沉减少(所有p≤0.01)。增加的多孔表面形貌增加了下沉,而非多孔表面显著降低了下沉(所有p<0.001)。下沉不因植入物孔隙率的变化(所有p≥0.35)或材料特性/模量的变化(所有p≥0.19)而不同。使用更高密度的泡沫时下沉显著降低(p<0.001)。植入物的刚度受孔隙率(所有p<0.02)和平滑表面形貌(p = 0.01)影响,但不受管腔大小影响(所有p≥0.15)。多孔钛植入物和PEEK植入物之间的刚度没有差异(p = 0.96),两者都比实心钛植入物刚度小(两者p<0.001)。表面积与下沉呈负相关(r = -0.786,p = 0.012),但与刚度不相关(r = 0.560,p = 0.12)。

结论

植入物表面积和表面形貌极大地影响椎间下沉。在这个体外模型中,表观刚度、植入物孔隙率和材料特性不影响下沉。较高的泡沫密度也导致比低密度泡沫更低的下沉。体内环境中的生物学反应可能也会影响临床下沉,这在配套研究(第二部分)中进行评估。

临床意义

本研究提供了关于新型3D打印钛技术的有价值信息。我们表明融合器表面积和表面形貌是对椎间下沉发展影响最大的植入物设计参数。此外,骨矿物质密度是对预防下沉影响最大的因素。这些数据支持术前患者优化,并强调手术期间终板保护的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验