Ong Adrian Wee Wen, Cao Steve Yueran, Chan Leemen Chee Yong, Lim Javier, Kwek Leong Chuan
Centre for Quantum Technologies, National University of Singapore, Singapore 117543, Singapore.
MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, Singapore 117543, Singapore.
J Chem Theory Comput. 2025 Jan 14;21(1):138-154. doi: 10.1021/acs.jctc.4c01070. Epub 2024 Dec 18.
The long-held assumption that the optimization of parameters for NDDO-descendant semiempirical methods may be performed without precise geometry optimization is assessed in detail; the relevant equations for the analytical evaluation of the geometry-corrected derivatives of molecular properties that account for changes in the optimum geometry are then presented. The first and second derivatives calculated from our implementation of MNDO are used for a limited reparameterization of 1,113 CHNO molecules taken from the PM7 training set, demonstrating an improvement over the PARAM program used in the optimization of parameters for the PMx methods.
长期以来一直认为,在不进行精确几何优化的情况下就可以对NDDO衍生的半经验方法的参数进行优化,本文对此进行了详细评估;随后给出了用于分析评估分子性质的几何校正导数的相关方程,这些导数考虑了最佳几何结构的变化。从我们实现的MNDO计算得到的一阶和二阶导数,被用于对从PM7训练集中选取的1113个CHNO分子进行有限的重新参数化,结果表明相较于用于PMx方法参数优化的PARAM程序有了改进。