Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.
TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
Nat Biotechnol. 2023 Mar;41(3):332-336. doi: 10.1038/s41587-022-01467-z. Epub 2022 Oct 27.
Models of intercellular communication in tissues are based on molecular profiles of dissociated cells, are limited to receptor-ligand signaling and ignore spatial proximity in situ. We present node-centric expression modeling, a method based on graph neural networks that estimates the effects of niche composition on gene expression in an unbiased manner from spatial molecular profiling data. We recover signatures of molecular processes known to underlie cell communication.
组织细胞间通讯模型基于分离细胞的分子谱,仅限于受体配体信号,并且忽略了原位的空间接近性。我们提出了以节点为中心的表达建模方法,该方法基于图神经网络,可以从空间分子分析数据中以无偏的方式估计生态位组成对基因表达的影响。我们恢复了已知是细胞通讯基础的分子过程的特征。