Barron Daniel S, Saltoun Karin, Kiesow Hannah, Fu Melanie, Cohen-Tanugi Jessica, Geha Paul, Scheinost Dustin, Isaac Zacharia, Silbersweig David, Bzdok Danilo
Department of Psychiatry, Brigham & Women's Hospital, Mass General Brigham, Boston, USA.
Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Mass General Brigham, Boston, USA.
BMC Med. 2024 Dec 18;22(1):594. doi: 10.1186/s12916-024-03807-z.
Pain is a complex problem that is triaged, diagnosed, treated, and billed based on which body part is painful, almost without exception. While the "body part framework" guides the organization and treatment of individual patients' pain conditions, it remains unclear how to best conceptualize, study, and treat pain conditions at the population level. Here, we investigate (1) how the body part framework agrees with population-level, biologically derived pain profiles; (2) how do data-derived pain profiles interface with other symptom domains from a whole-body perspective; and (3) whether biologically derived pain profiles capture clinically salient differences in medical history.
To understand how pain conditions might be best organized, we applied a carefully designed a multi-variate pattern-learning approach to a subset of the UK Biobank (n = 34,337), the largest publicly available set of real-world pain experience data to define common population-level profiles. We performed a series of post hoc analyses to validate that each pain profile reflects real-world, clinically relevant differences in patient function by probing associations of each profile across 137 medication categories, 1425 clinician-assigned ICD codes, and 757 expert-curated phenotypes.
We report four unique, biologically based pain profiles that cut across medical specialties: pain interference, depression, medical pain, and anxiety, each representing different facets of functional impairment. Importantly, these profiles do not specifically align with variables believed to be important to the standard pain evaluation, namely painful body part, pain intensity, sex, or BMI. Correlations with individual-level clinical histories reveal that our pain profiles are largely associated with clinical variables and treatments of modifiable, chronic diseases, rather than with specific body parts. Across profiles, notable differences include opioids being associated only with the pain interference profile, while antidepressants linked to the three complimentary profiles. We further provide evidence that our pain profiles offer valuable, additional insights into patients' wellbeing that are not captured by the body-part framework and make recommendations for how our pain profiles might sculpt the future design of healthcare delivery systems.
Overall, we provide evidence for a shift in pain medicine delivery systems from the conventional, body-part-based approach to one anchored in the pain experience and holistic profiles of patient function. This transition facilitates a more comprehensive management of chronic diseases, wherein pain treatment is integrated into broader health strategies. By focusing on holistic patient profiles, our approach not only addresses pain symptoms but also supports the management of underlying chronic conditions, thereby enhancing patient outcomes and improving quality of life. This model advocates for a seamless integration of pain management within the continuum of care for chronic diseases, emphasizing the importance of understanding and treating the interdependencies between chronic conditions and pain.
疼痛是一个复杂的问题,几乎毫无例外,都是根据疼痛的身体部位进行分诊、诊断、治疗和计费。虽然“身体部位框架”指导着个体患者疼痛状况的组织和治疗,但目前尚不清楚如何在人群层面上对疼痛状况进行最佳的概念化、研究和治疗。在此,我们研究:(1)身体部位框架与人群层面基于生物学的疼痛特征如何相符;(2)从全身角度来看,数据衍生的疼痛特征如何与其他症状领域相互作用;(3)基于生物学的疼痛特征是否能捕捉病史中临床上的显著差异。
为了解疼痛状况如何得到最佳组织,我们对英国生物银行的一个子集(n = 34337)应用了精心设计的多变量模式学习方法,这是最大的公开可用的真实世界疼痛体验数据集,以定义常见的人群层面特征。我们进行了一系列事后分析,通过探究每个特征与137种药物类别、1425个临床医生指定的国际疾病分类代码以及757个专家策划的表型之间的关联,来验证每个疼痛特征反映了患者功能在现实世界中与临床相关的差异。
我们报告了四种独特的、基于生物学的疼痛特征,这些特征跨越医学专科:疼痛干扰、抑郁、医学疼痛和焦虑,每种特征代表功能损害的不同方面。重要的是,这些特征与被认为对标准疼痛评估很重要的变量,即疼痛的身体部位、疼痛强度、性别或体重指数,并无特定的对应关系。与个体层面临床病史的相关性显示,我们的疼痛特征在很大程度上与可改变的慢性疾病的临床变量和治疗相关,而非与特定身体部位相关。在各个特征中,显著差异包括阿片类药物仅与疼痛干扰特征相关,而抗抑郁药与其他三种互补特征相关。我们进一步提供证据表明,我们的疼痛特征为患者的健康状况提供了有价值的额外见解,而这些见解是身体部位框架所无法捕捉到的,并就我们的疼痛特征如何塑造未来医疗保健提供系统的设计提出了建议。
总体而言,我们为疼痛医学提供了证据,表明其交付系统应从传统的基于身体部位的方法转变为基于疼痛体验和患者功能整体特征的方法。这种转变有助于对慢性疾病进行更全面的管理,其中疼痛治疗被整合到更广泛的健康策略中。通过关注患者的整体特征,我们的方法不仅解决了疼痛症状,还支持了对潜在慢性疾病状况的管理,从而改善患者的治疗效果并提高生活质量。这种模式倡导在慢性疾病的连续护理中无缝整合疼痛管理,强调理解和治疗慢性疾病与疼痛之间相互依存关系的重要性。