Han Seung Hee, Kim Donguk, Lee Gihoon, Baek Kyungeun, Kang Seok Ju, Son Bumsuk, Shin Jaewook, Choi Nam-Soon
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
LG Energy Solution, 188 Munji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea.
Small. 2025 May;21(19):e2409810. doi: 10.1002/smll.202409810. Epub 2024 Dec 18.
Electrolyte additive engineering enables the creation of long-lasting interfacial layers that protect electrodes, thus extending the lifetime of high-energy lithium-ion batteries employing Ni-rich Li[NiCoMn]O (NCM) cathodes. However, batteries face various limitations if existing additives are employed alone without an appropriate combination. Herein, the study reports the development of a molecular-engineered salt-type multifunctional additive, lithium bis(phosphorodifluoridate) triethylammonium ethenesulfonate (LiPENS), that leverages the different functionalities of phosphorous, nitrogen, and sulfur-embedded motifs, as well as the classical additive vinylene carbonate (VC), to construct protective interfacial layers. The thermally and electrochemically reinforced solid electrolyte interphase (SEI), achieved through the combined use of LiPENS and VC, conserves the lithiation level of the Graphite (Gr) anode with minimal SEI growth, whereas the inorganic-rich cathode-electrolyte interface (CEI) alleviates the irrevocable phase transition and mechanical fragility of the LiNiCoMnO (NCM811) secondary particles. The multifunctional roles of LiPENS are demonstrated in an NCM811/Gr full cell, showing a discharge capacity of 190.7 mAh g with an enhanced capacity retention of 91.8% at 1 C and 45 °C after 300 cycles. This advancement in electrolyte additive engineering based on salt structures can lead to more efficient, reliable, and commercially viable batteries for high-energy applications, including electric vehicles and portable electronics.
电解质添加剂工程能够创建持久的界面层来保护电极,从而延长采用富镍Li[NiCoMn]O(NCM)阴极的高能锂离子电池的使用寿命。然而,如果单独使用现有添加剂而没有适当的组合,电池会面临各种限制。在此,该研究报告了一种分子工程盐型多功能添加剂双(二氟磷酸)三乙铵乙烯磺酸盐锂(LiPENS)的开发,它利用了含磷、氮和硫的不同功能基团,以及经典添加剂碳酸亚乙烯酯(VC)来构建保护界面层。通过联合使用LiPENS和VC实现的热和电化学增强的固体电解质界面(SEI),以最小的SEI生长保持了石墨(Gr)阳极的锂化水平,而富含无机成分的阴极-电解质界面(CEI)减轻了LiNiCoMnO(NCM811)二次颗粒不可逆转的相变和机械脆性。LiPENS的多功能作用在NCM811/Gr全电池中得到了证明,在1C和45°C下经过300次循环后,放电容量为190.7 mAh g,容量保持率提高到91.8%。这种基于盐结构的电解质添加剂工程的进展可以为包括电动汽车和便携式电子产品在内的高能应用带来更高效、可靠和具有商业可行性的电池。