de Boer Jeroen J, Ehrler Bruno
Center for Nanophotonics, AMOLF, 1098 XG Amsterdam, The Netherlands.
ACS Energy Lett. 2024 Nov 8;9(12):5787-5794. doi: 10.1021/acsenergylett.4c02360. eCollection 2024 Dec 13.
The efficient conduction of mobile ions in halide perovskites is highly promising for artificial synapses (or memristive devices), devices with a conductivity that can be varied by applying a bias voltage. Here we address the challenge of downscaling halide perovskite-based artificial synapses to achieve low energy consumption and allow high-density integration. We fabricate halide perovskite artificial synapses in a back-contacted architecture to achieve microscale devices despite the high solubility of halide perovskites in polar solvents that are commonly used in lithography. The energy consumption of a conductance change of the device is as low as 640 fJ, among the lowest reported for two-terminal halide perovskite artificial synapses so far. Moreover, the high resistance of the device up to hundreds of megaohms, low operating voltage of 100 mV and simple two-terminal architecture enable implementation in highly dense crossbar arrays. These arrays could potentially show orders of magnitude lower energy consumption for computation compared to conventional digital computers.
卤化物钙钛矿中移动离子的高效传导对于人工突触(或忆阻器件)极具前景,这类器件的电导率可通过施加偏置电压来改变。在此,我们应对将基于卤化物钙钛矿的人工突触缩小尺寸以实现低能耗并允许高密度集成这一挑战。尽管卤化物钙钛矿在光刻常用的极性溶剂中具有高溶解性,但我们通过背接触结构制造卤化物钙钛矿人工突触以实现微尺度器件。该器件电导变化的能耗低至640飞焦,是迄今为止报道的两终端卤化物钙钛矿人工突触中最低的之一。此外,该器件高达数百兆欧的高电阻、100毫伏的低工作电压以及简单的两终端结构使得其能够在高密度交叉阵列中实现。与传统数字计算机相比,这些阵列在计算时可能会显示出低几个数量级的能耗。