Suppr超能文献

使用纵向修正治疗策略研究连续、时变和/或复杂的暴露。

Studying Continuous, Time-varying, and/or Complex Exposures Using Longitudinal Modified Treatment Policies.

机构信息

From the Division of Biostatistics, Department of Population Health Science, Weill Cornell Medicine, New York, NY.

School of Industrial Engineering, University of Los Andes, Bogotã, Colombia.

出版信息

Epidemiology. 2024 Sep 1;35(5):667-675. doi: 10.1097/EDE.0000000000001764. Epub 2024 Aug 6.

Abstract

This tutorial discusses a methodology for causal inference using longitudinal modified treatment policies. This method facilitates the mathematical formalization, identification, and estimation of many novel parameters and mathematically generalizes many commonly used parameters, such as the average treatment effect. Longitudinal modified treatment policies apply to a wide variety of exposures, including binary, multivariate, and continuous, and can accommodate time-varying treatments and confounders, competing risks, loss to follow-up, as well as survival, binary, or continuous outcomes. Longitudinal modified treatment policies can be seen as an extension of static and dynamic interventions to involve the natural value of treatment and, like dynamic interventions, can be used to define alternative estimands with a positivity assumption that is more likely to be satisfied than estimands corresponding to static interventions. This tutorial aims to illustrate several practical uses of the longitudinal modified treatment policy methodology, including describing different estimation strategies and their corresponding advantages and disadvantages. We provide numerous examples of types of research questions that can be answered using longitudinal modified treatment policies. We go into more depth with one of these examples, specifically, estimating the effect of delaying intubation on critically ill COVID-19 patients' mortality. We demonstrate the use of the open-source R package lmtp to estimate the effects, and we provide code on https://github.com/kathoffman/lmtp-tutorial.

摘要

本教程讨论了使用纵向修改治疗策略进行因果推断的方法。这种方法促进了许多新参数的数学形式化、识别和估计,并使许多常用的参数(如平均治疗效果)数学上得到了推广。纵向修改治疗策略适用于广泛的暴露情况,包括二分类、多变量和连续变量,并且可以适应时变的治疗和混杂因素、竞争风险、随访丢失以及生存、二分类或连续结局。纵向修改治疗策略可以被视为静态和动态干预的扩展,涉及治疗的自然价值,并且与动态干预一样,可以用于定义具有正定性假设的替代估计量,该假设比静态干预对应的估计量更有可能得到满足。本教程旨在说明纵向修改治疗策略方法的几种实际用途,包括描述不同的估计策略及其相应的优缺点。我们提供了许多使用纵向修改治疗策略可以回答的研究问题的示例。我们深入探讨了其中一个示例,即估计延迟插管对危重症 COVID-19 患者死亡率的影响。我们展示了如何使用开源 R 包 lmtp 来估计效果,并且我们在 https://github.com/kathoffman/lmtp-tutorial 上提供了代码。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验