Suppr超能文献

蛋白质稳定性模型无法捕捉双点突变的上位性相互作用。

Protein stability models fail to capture epistatic interactions of double point mutations.

作者信息

Dieckhaus Henry, Kuhlman Brian

机构信息

Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.

Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA.

出版信息

Protein Sci. 2025 Jan;34(1):e70003. doi: 10.1002/pro.70003.

Abstract

There is strong interest in accurate methods for predicting changes in protein stability resulting from amino acid mutations to the protein sequence. Recombinant proteins must often be stabilized to be used as therapeutics or reagents, and destabilizing mutations are implicated in a variety of diseases. Due to increased data availability and improved modeling techniques, recent studies have shown advancements in predicting changes in protein stability when a single-point mutation is made. Less focus has been directed toward predicting changes in protein stability when there are two or more mutations. Here, we analyze the largest available dataset of double point mutation stability and benchmark several widely used protein stability models on this and other datasets. We find that additive models of protein stability perform surprisingly well on this task, achieving similar performance to comparable non-additive predictors according to most metrics. Accordingly, we find that neither artificial intelligence-based nor physics-based protein stability models consistently capture epistatic interactions between single mutations. We observe one notable deviation from this trend, which is that epistasis-aware models provide marginally better predictions than additive models on stabilizing double point mutations. We develop an extension of the ThermoMPNN framework for double mutant modeling, as well as a novel data augmentation scheme, which mitigates some of the limitations in currently available datasets. Collectively, our findings indicate that current protein stability models fail to capture the nuanced epistatic interactions between concurrent mutations due to several factors, including training dataset limitations and insufficient model sensitivity.

摘要

人们对准确预测由于蛋白质序列中的氨基酸突变而导致的蛋白质稳定性变化的方法有着浓厚的兴趣。重组蛋白通常必须经过稳定化处理才能用作治疗剂或试剂,而不稳定的突变与多种疾病有关。由于数据可用性的提高和建模技术的改进,最近的研究表明在预测单点突变时蛋白质稳定性的变化方面取得了进展。而对于预测两个或更多突变时蛋白质稳定性的变化则关注较少。在这里,我们分析了最大的双点突变稳定性可用数据集,并在这个数据集和其他数据集上对几个广泛使用的蛋白质稳定性模型进行了基准测试。我们发现蛋白质稳定性的加性模型在这项任务中表现出奇地好,根据大多数指标,其性能与可比的非加性预测器相似。因此,我们发现基于人工智能的和基于物理学的蛋白质稳定性模型都不能始终捕捉单个突变之间的上位性相互作用。我们观察到一个明显偏离这一趋势的情况,即上位性感知模型在稳定双点突变方面提供的预测略优于加性模型。我们开发了一个用于双突变体建模的ThermoMPNN框架扩展,以及一种新颖的数据增强方案,该方案减轻了当前可用数据集中的一些限制。总的来说,我们的研究结果表明,由于包括训练数据集限制和模型灵敏度不足在内的几个因素,当前的蛋白质稳定性模型未能捕捉到并发突变之间细微的上位性相互作用。

相似文献

8
Tobacco packaging design for reducing tobacco use.用于减少烟草使用的烟草包装设计。
Cochrane Database Syst Rev. 2017 Apr 27;4(4):CD011244. doi: 10.1002/14651858.CD011244.pub2.

本文引用的文献

2
The genetic architecture of protein stability.蛋白质稳定性的遗传结构。
Nature. 2024 Oct;634(8035):995-1003. doi: 10.1038/s41586-024-07966-0. Epub 2024 Sep 25.
6
Machine learning for functional protein design.用于功能性蛋白质设计的机器学习
Nat Biotechnol. 2024 Feb;42(2):216-228. doi: 10.1038/s41587-024-02127-0. Epub 2024 Feb 15.
8
The energetic and allosteric landscape for KRAS inhibition.KRAS抑制的能量和变构格局。
Nature. 2024 Feb;626(7999):643-652. doi: 10.1038/s41586-023-06954-0. Epub 2023 Dec 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验