Suppr超能文献

使用生成模型预测蛋白质绝对折叠稳定性

Predicting absolute protein folding stability using generative models.

作者信息

Cagiada Matteo, Ovchinnikov Sergey, Lindorff-Larsen Kresten

机构信息

Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.

Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

出版信息

Protein Sci. 2025 Jan;34(1):e5233. doi: 10.1002/pro.5233.

Abstract

While there has been substantial progress in our ability to predict changes in protein stability due to amino acid substitutions, progress has been slower in methods to predict the absolute stability of a protein. Here, we show how a generative model for protein sequence can be leveraged to predict absolute protein stability. We benchmark our predictions across a broad set of proteins and find a mean error of 1.5 kcal/mol and a correlation coefficient of 0.7 for the absolute stability across a range of natural, small- to medium-sized proteins up to ca. 150 amino acid residues. We analyze current limitations and future directions including how such a model may be useful for predicting conformational free energies. Our approach is simple to use and freely available at an online implementation available via https://github.com/KULL-Centre/_2024_cagiada_stability.

摘要

虽然我们在预测氨基酸取代导致的蛋白质稳定性变化方面取得了重大进展,但在预测蛋白质绝对稳定性的方法上进展较慢。在这里,我们展示了如何利用蛋白质序列生成模型来预测蛋白质的绝对稳定性。我们在广泛的蛋白质组上对预测结果进行基准测试,发现对于一系列天然的、中小规模的蛋白质(最多约150个氨基酸残基),绝对稳定性的平均误差为1.5千卡/摩尔,相关系数为0.7。我们分析了当前的局限性和未来方向,包括这样一个模型如何有助于预测构象自由能。我们的方法使用简单,可通过https://github.com/KULL-Centre/_2024_cagiada_stability在线实现免费获取。

相似文献

7
Nicotine receptor partial agonists for smoking cessation.用于戒烟的尼古丁受体部分激动剂。
Cochrane Database Syst Rev. 2016 May 9;2016(5):CD006103. doi: 10.1002/14651858.CD006103.pub7.

引用本文的文献

5
Prediction of phase-separation propensities of disordered proteins from sequence.从序列预测无序蛋白质的相分离倾向
Proc Natl Acad Sci U S A. 2025 Apr;122(13):e2417920122. doi: 10.1073/pnas.2417920122. Epub 2025 Mar 25.
6
Large-scale energy decomposition for the analysis of protein stability.用于蛋白质稳定性分析的大规模能量分解
Cell Stress Chaperones. 2025 Feb;30(1):57-68. doi: 10.1016/j.cstres.2025.01.001. Epub 2025 Jan 29.

本文引用的文献

3
Illuminating protein space with a programmable generative model.用可编程生成模型照亮蛋白质空间。
Nature. 2023 Nov;623(7989):1070-1078. doi: 10.1038/s41586-023-06728-8. Epub 2023 Nov 15.
6
A structural biology community assessment of AlphaFold2 applications.AlphaFold2 应用的结构生物学社区评估。
Nat Struct Mol Biol. 2022 Nov;29(11):1056-1067. doi: 10.1038/s41594-022-00849-w. Epub 2022 Nov 7.
7
ProTstab2 for Prediction of Protein Thermal Stabilities.ProTstab2 预测蛋白质热稳定性
Int J Mol Sci. 2022 Sep 16;23(18):10798. doi: 10.3390/ijms231810798.
10
Highly accurate protein structure prediction with AlphaFold.利用 AlphaFold 进行高精度蛋白质结构预测。
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验