Ding Cheng, Yao Tianliang, Wu Chenwei, Ni Jianyuan
Georgia Institute of Technology, Department of Biomedical Engineering, Atlanta, United States.
Tongji University, Department of Control Science and Engineering, College of Electronic and InformationEngineering, No. 1239, Siping Road, Shanghai, 200092, China.
Biosens Bioelectron. 2025 Mar 1;271:117073. doi: 10.1016/j.bios.2024.117073. Epub 2024 Dec 16.
The Electrocardiogram (ECG) remains a fundamental tool in cardiac diagnostics, yet its interpretation has traditionally relied on cardiologists' expertise. Deep learning has revolutionized medical data analysis, especially within ECG diagnostics. However, the challenge of inter-patient variability limits the generalizability of ECG-AI models trained on population datasets, often reducing accuracy for specific patients or groups. While prior studies have developed various deep-learning techniques to address this issue, these advancements largely focus on universal models without tailoring to individual patient needs. A systematic review methodology was employed, comprehensively searching four major databases (PubMed, IEEE Xplore, Web of Science, and Google Scholar), meticulously screening and analyzing studies from 2020 to 2024 using a rigorous two-step selection process to ensure methodological quality and relevance, ultimately yielding 112 studies for comprehensive analysis. This review offers a unique perspective by systematically examining recent deep-learning approaches designed explicitly for personalized ECG diagnosis, emphasizing models that address patient-specific variability. Using a rigorous methodology for selecting and analyzing relevant studies, we provide an in-depth overview of advanced techniques, including transfer learning, generative adversarial networks, meta-learning, and domain adaptation. The review also investigates the limitations of these methods, such as balancing generalization with patient specificity and addressing data privacy concerns. By identifying these challenges and outlining future directions, this review highlights the transformative potential of deep learning for ECG diag-nostics in clinical practice. Our findings underscore a pathway toward more accurate, efficient, and patient-centered cardiac diagnostics, setting a foundation for future personalized care innovations.
心电图(ECG)仍然是心脏诊断的基本工具,但其解读传统上依赖于心脏病专家的专业知识。深度学习彻底改变了医学数据分析,尤其是在心电图诊断领域。然而,患者间变异性的挑战限制了在人群数据集上训练的心电图人工智能模型的通用性,常常降低针对特定患者或群体的准确性。虽然先前的研究已经开发出各种深度学习技术来解决这个问题,但这些进展主要集中在通用模型上,而没有根据个体患者的需求进行定制。采用了系统评价方法,全面搜索了四个主要数据库(PubMed、IEEE Xplore、科学网和谷歌学术),使用严格的两步筛选过程精心筛选和分析了2020年至2024年的研究,以确保方法的质量和相关性,最终筛选出112项研究进行全面分析。本综述通过系统地研究专门为个性化心电图诊断设计的最新深度学习方法,提供了一个独特的视角,重点关注解决患者特异性变异性的模型。我们使用严格的方法选择和分析相关研究,深入概述了先进技术,包括迁移学习、生成对抗网络、元学习和域适应。综述还研究了这些方法的局限性,如在通用性与患者特异性之间取得平衡以及解决数据隐私问题。通过识别这些挑战并概述未来方向,本综述突出了深度学习在临床实践中对心电图诊断的变革潜力。我们的研究结果强调了一条通往更准确、高效和以患者为中心的心脏诊断的途径,为未来的个性化医疗创新奠定了基础。