Suppr超能文献

脑电图连接性作为θ波与β波比率神经反馈治疗后注意缺陷多动障碍综合评定量表(ICAN)评定的儿童改善情况的预测指标:机器学习分析

EEG Connectivity as Predictor of ICAN ADHD Children's Improvement After Completion of Theta Beta Ratio Neurofeedback: Machine Learning Analyses.

作者信息

Kerson Cynthia, Yazbeck Maha, Shahsavaripoor Behnoosh, Walker Rebekah, Manalang-Monnier Phoebe, Allen Theodore, Arnold L Eugene, Lubar Joel

机构信息

Department of Applied Psychophysiology, Saybrook University, Pasadena, CA, USA.

APEd (Applied Psychophysiology Education), Napa, CA, USA.

出版信息

Appl Psychophysiol Biofeedback. 2025 May 26. doi: 10.1007/s10484-025-09713-1.

Abstract

Attention deficit hyperactivity disorder is a prevalent syndrome that costs billions of dollars annually. Finding meaningful interventions based upon predictive baseline EEG values can reduce uncertainty in symptom remediation. This study aims to deepen the understanding of ADHD neurophysiology and contribute to the development of personalized approaches in its treatment. This study retrospectively assessed EEG connectivity of participants in the International Collaborative ADHD Neurofeedback (ICAN) randomized controlled trial (7-10YO, N = 83) of theta/beta ratio neurofeedback (TBR-NFB). Using machine learning, it examined the relationship between inattention improvement on the Conners' Teacher and Parent Rating Scales (CTPRS) and specific baseline frequency connections within networks relevant to ADHD to find predictors of clinical improvement. Analyses were also performed considering specific comorbidities, slow cognitive tempo, ADHD presentation, pre-to-post network changes, and treatment group. Dysregulation in the ventral and dorsal attention networks, and delta and hibeta frequency bands throughout all networks were the strongest baseline connectivity predictors of clinical improvement on the CTPRS. The connectivity patterns predicting improvement differed significantly between active NFB and control. Other findings included predictors of improvements in EEG connectivity dysregulations, demographics, and connectivity patterns of comorbidity. Machine learning algorithms identified EEG features in connectivity, network, and frequency to assess when considering ADHD interventions. There was evidence, albeit weak, that the EEG features we studied predicted improvement with the ICAN TBR-NFB protocol. When considering interventions for ADHD symptoms, a multi-channel EEG evaluation that focuses on specific brain connectivity patterns may offer insight into treatment choice.

摘要

注意缺陷多动障碍是一种常见综合征,每年造成数十亿美元的损失。基于预测性基线脑电图值找到有意义的干预措施可以减少症状缓解的不确定性。本研究旨在加深对注意缺陷多动障碍神经生理学的理解,并为其个性化治疗方法的发展做出贡献。本研究回顾性评估了国际协作注意缺陷多动障碍神经反馈(ICAN)随机对照试验(7至10岁,N = 83)中参与者的θ/β比率神经反馈(TBR-NFB)的脑电图连通性。使用机器学习,研究了康纳斯教师和家长评定量表(CTPRS)上注意力不集中改善情况与注意缺陷多动障碍相关网络内特定基线频率连接之间的关系,以找到临床改善的预测因素。还考虑了特定合并症、认知速度缓慢、注意缺陷多动障碍表现、治疗前至治疗后网络变化以及治疗组进行了分析。腹侧和背侧注意网络以及所有网络中的δ和高β频段的调节异常是CTPRS上临床改善的最强基线连通性预测因素。主动神经反馈组和对照组之间预测改善的连通性模式存在显著差异。其他发现包括脑电图连通性调节异常、人口统计学特征以及合并症连通性模式改善的预测因素。机器学习算法在连通性、网络和频率方面确定了脑电图特征,以便在考虑注意缺陷多动障碍干预措施时进行评估。有证据表明,尽管证据薄弱,但我们研究的脑电图特征可预测ICAN TBR-NFB方案的改善情况。在考虑针对注意缺陷多动障碍症状的干预措施时,专注于特定脑连通性模式的多通道脑电图评估可能有助于洞察治疗选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验